

314353

Prepared Under Contract to The Peoples Gas Light and Coke Company

The Rogers Park Sub-Shop Main Parcel

> Site Investigation Sampling Data

Prepared September 2001

Burns & McDonnell 2601 West 22nd Street Oak Brook, Illinois 60523

Contents

Analytical Results Summary Tables

Table I	Soil Analytical Laboratory Results
Table 2	Soil Physical Testing Results
Table 3	Summary of Soil Analytical Results - Roy F. Weston Data
Table 4	Groundwater Analytical Laboratory Data

Soil Sample Data Evaluation Memoranda

Groundwater Sample Data Evaluation Memoranda

Soil Analytical Results Data Sheets

Groundwater Analytical Results Data Sheets

Quality Assurance / Quality Control
Soil Laboratory Blank Analysis Data Sheets
Groundwater Laboratory Blank Analysis Data Sheets
Soil Laboratory Control Standard Data Sheets
Groundwater Laboratory Control Standard Data Sheets

Laboratory Case Narratives

Chain of Custody Records

Previous Investigation Data

Figures

Figure 1 Sample Location Map

Analytical Results Summary Tables

The Peoples Gas Light and Coke Company
The Rogers Park Sub-Shop
Main Parcel

Table 1 **Burns & McDonnell Soil Analytical Laboratory Results** Rogers Park Main Parcel

			pth (feet below groun		
	RPM-SB24-001	RPM-SB24-002	RPM-SB24-003	RPM-SB25-001	RPM-SB25-002
	0.5-1'	3-4'	5-7'	2-3'	5-7
Compound/Analyte	WT ~ 10'	WT ~ 10'	WT ~ 10'	WT ~ 9'	WT ~ 9'
		TCL VOCs (mg			
Acetone	NA	NA	NA	NA	NA
Benzene	0.002U	0.007	0.002	0.002U NA	0.003J NA
Bromodichloromethane	NA NA	NA NA	NA NA	NA NA	NA NA
Bromoform Bromomethane	NA NA	NA NA	NA NA	NA NA	NA NA
2-Butanone	NA NA	NA NA	NA NA	NA NA	NA NA
Carbon Disulfide	NA NA	NA NA	NA NA	NA NA	NA NA
Carbon Tetrachloride	NA NA	NA NA	NA	NA	NA
Chlorobenzene	NA	NA	NA	NA	NA
Chlorodibromomethane	NA	NA	NA	NA	NA
Chloroethane	NA	NA	NA	NA	NA
Chloroform	NA	NA	NA	NA	NA
Chloromethane	NA NA	NA	NA	NA	NA
,1-Dichloroethane	NA	NA	NA NA	NA NA	NA NA
,2-Dichloroethane	NA NA	NA NA	NA NA	NA NA	NA NA
,1-Dichloroethene	NA NA	NA NA	NA NA	NA NA	NA NA
rans-1,2-Dichloroethene	NA NA	NA NA	NA NA	NA NA	NA NA
1,2-Dichloropropane	NA NA	NA NA	NA	NA	NA
is-1,3-Dichloropropene	NA	NA	NA	NA	NA
rans-1,3-Dichloropropene	NA	NA	NA	NA	NA
EthylBenzene	0.005U	0.005U	0.005U	0.005U	0.005U
2-hexanone	NA	NA	NA	NA	NA
-methyl-2-pentanone	NA	NA	NA	NA	NA
Methylene Chloride	NA 0.00511	NA 0.00511	NA 0.005U	NA 0.005U	NA 0.005U
Styrene ,1,2,2-Tetrachloroethane	0.005U NA	0.005U NA	0.0030 NA	0.0030 NA	NA
Fetrachloroethene	NA NA	NA NA	NA NA	NA NA	NA NA
Coluene	0.005U	0.005U	0.005U	0.005U	0.005U
,1,1-Trichloroethane	NA	NA	NA	NA	NA
,1,2-Trichloroethane	NA	NA	NA	NA	NA
Trichloroethene	NA	NA	NA	NA	NA
Vinyl Acetate	NA	NA	NA	NA	NA
Vinyl Chloride	NA	NA	NA	NA	NA
Cylenes (total)	0.005U	0.005U TCL SVOCs (m	0.005U	0.005U	0.005U
l-Chloro-3-methylphenol	NA	NA NA	NA NA	NA	NA
-Chlorophenol	NA NA	NA NA	NA NA	NA NA	NA NA
2.4-Dimethylphenol	NA NA	NA NA	NA	NA	NA
,4-Dinitrophenol	NA	NA	NA	NA	NA
,6-Dinitro-2-Methylphenol	NA	NA	NA	NA	NA
-Methylphenol	NA	NA	NA	NA	NA
&4-Methylphenol	NA NA	NA	NA NA	NA NA	NA NA
-Nitrophenol	NA NA	NA NA	NA NA	NA NA	NA NA
-Nitrophenol Pentachlorophenol	NA NA	NA NA	NA NA	NA NA	NA NA
Phenol	NA NA	NA NA	NA NA	NA NA	NA NA
.4,5-Trichlorophenol	NA NA	NA NA	NA NA	NA NA	NA NA
,4,6-Trichlorophenol	NA NA	NA NA	NA NA	NA	NA
cenaphthene	0.025U	0.025U	0.025U	0.025U	0.025U
cenaphthylene	0.025U	0.025U	0.025U	0.025U	0.025U
Anthracene	0.027	0.025U	0.025U	0.025U	0.025U
enzo[a]anthracene	0.085	0.025U	0.025U	0.025U	0.025U
enzo[b]fluoranthene	0.053	0.025U	0.025U	0.025U 0.025U	0.025U 0.025U
enzo[k]fluoranthene	0.067 0.036	0.025U 0.025U	0.025U 0.025U	0.025U 0.025U	0.025U 0.025U
Senzo[g,h,i]perylene	0.036	0.025U 0.025U	0.025U	0.025U	0.025U
enzo[a]pyrene utylbenzylphalate	0.045 NA	0.023U NA	0.0230 NA	0.0230 NA	NA
is(2-chloroethoxy)methane	NA NA	NA NA	NA NA	NA NA	NA NA
is(2-chloroethyl) ether	NA NA	NA NA	NA NA	NA NA	NA
Bis(2-chloroisopropyl) ether	NA	NA	NA	NA	NA
lis(2-ethylhexyl)phyhalate	NA	NA	NA	NA	NA
-bromaphenylphenylether	NA	NA NA	NA	NA	NA
arbazole	NA	NA	NA	NA	NA

NOTES:

(1) U - Indicates compound/analyte was analyzed for but not detected, the associated value is the sample reporting limit.

(2) J - Indicates an estimated value.

(3) NA - Not Analyzed.

(4) WT ~ NE - Water table not encountered.

(5) WT ~ n' - Water table approximately n feet below ground surface

	Sample Location and Depth (feet below ground surface)/Concentration					
	RPM-SB24-001	RPM-SB24-002	RPM-SB24-003	RPM-SB25-001	RPM-SB25-002	
	0.5-1'	3-4'	5-7'	2-3'	5-7'	
Compound/Analyte	WT ~ 10'	WT ~ 10'	WT ~ 10'	WT ~ 9'	WT ~ 9'	
		TCL SVOCs - Contin		N	NA	
-Chloronaphthalene	NA	NA NA	NA NA	NA NA	NA NA	
-Chlorophenyl-phenylether	NA NA	NA NA	NA NA	NA NA	NA NA	
-Chloroaniline	0.084	0.025U	0.025U	0.025U	0.025U	
Chrysene Dibenz[a,h]anthracene	0.025U	0.025U	0.025U	0.025U	0.025U	
Dibenzofuran	NA NA	NA NA	NA NA	NA NA	NA	
Di-n-butylphthalate	NA NA	NA NA	NA	NA	NA	
,2-Dichlorobenzene	NA	NA	NA	NA	NA	
,3-Dichlorobenzene	ÑΑ	NA	NA	NA	NA	
,4-Dichlorobenzene	NA	NA	NA	NA	NA	
,3-Dichlorobenzidine	NA	NA	NA	NA	NA	
,4-Dichlorophenol	NA	NA	NA	NA	NA	
Piethylphthalate	NA	NA	NA	NA	NA	
imethylphtalate	NA	NA	NA	NA	NA	
,4-Dinitrotoluene	NA	NA	NA NA	NA	NA NA	
,6-Dinitrotoluene	NA NA	NA NA	NA NA	NA NA	NA NA	
Di-n-octylphthalate	NA 0.175	NA 0.025U	NA 0.025U	0.034	0.025U	
luoranthene luorene	0.175 0.025U	0.025U 0.025U	0.025U	0.034 0.025U	0.025U	
lexachlorobenzene	0.0250 NA	NA NA	NA	NA	NA NA	
lexachlorobutadiene	NA NA	NA NA	NA NA	NA NA	NA NA	
lexachlorocyclopentadiene	NA NA	NA NA	NA NA	NA NA	NA	
lexachloroethane	NA NA	NA NA	NA	NA	NA	
ndeno[1,2,3-cd]pyrene	0.040	0.025U	0.025U	0.025U	0.025U	
sophorone	NA	NA	NA	NA	NA	
-Methylnaphthalene	NA	NA	NA	NA	NA	
laphthalene	0.025U	0.025U	0.025U	0.025U	0.025U	
-Nitroaniline	NA	NA	NA	NA	NA	
-Nitroaniline	NA	NA	NA	NA	NA NA	
-Nitroaniline	NA	NA NA	NA NA	NA NA	NA NA	
Vitrobenzene	NA NA	NA NA	NA NA	NA NA	NA NA	
V-nitrosodi-n-propylamine V-nitrosodimethylamine	NA NA	NA NA	NA NA	NA NA	NA NA	
N-nitrosodiphenylamine	NA NA	NA NA	NA NA	NA NA	NA	
Phenanthrene	0.076	0.025U	0.025U	0.025U	0.025U	
Pyrene	0.173	0.025U	0.025U	0.040	0.025U	
,2,4-Trichlorobenzene	NA	NA	NA	NA	NA	
		Priority Pollutant Met	als (mg/kg)			
Antimony	NA	NA	NA	NA	NA	
Arsenic	14.60	10.70	5.72	7.83	2.44	
Barium	23.10	60.20	39.40	73.40	39.70	
Beryllium	NA	NA NA	NA 0.511	NA 0.5U	NA 0.5V	
Cadmium	0.5U	0.5U	0.5U	0.5U 26.20	0.5U 16.80	
Chromium	19.80 NA	27.00 NA	16.70 NA	26.20 NA	NA	
Copper Lead	32.50	18.70	16.90	16.70	14.10	
леаа Легсигу	0.04U	0.050	0.044	0.04U	0.04U	
lickel	NA	NA	NA	NA NA	NA	
elenium	1.04	1U	1U	1U	1U	
ilver	0.5U	0.5U	0.5U	0.5U	0.5U	
'hallium	NA	NA	NA	NA	NA	
inc	NA	NA	NA	NA	NA	
otal Cyanide	0.25U	0.25U	0.25U	0.25U	0.25U	
		SPLP Lead and Chron	nium (mg/L)			
PLP Lead	NA	NA	NA	NA	NA	
PLP Chromium	NA	NA	NA	NA	NA	
		PCBs (mg/k	g)			
roclor 1016	NA	NA	NA	NA	NA	
roclor 1221	NA	NA	NA	NA	NA	
roclor 1232	NA NA	NA NA	NA NA	NA NA	NA	
	NA NA	NA NA	NA NA	NA NA	NA NA	
roclor 1242				NA NA	NA NA	
roclor 1248	NA NA	NA NA	NA NA			
roclor 1254	NA	NA	NA	NA NA	NA	
Aroclor 1260	NA	NA	NA	NA NA	NA	

[|] Arcolor 1260 | J NA 1 Ave NOTES:
(1) U - Indicates compound/analyte was analyzed for but not detected, the associated value is the sample reporting limit.
(2) J - Indicates an estimated value
(3) NA - Not Analyzed.
(4) WT ~ NE - Water table not encountered
(5) WT ~ n' - Water table approximately n feet below ground surface

		Location and Depth (t			DDM CD22 002	
	RPM-SB32-001	RPM-SB32-002	RPM-SB32-003	RPM-SB33-001	RPM-SB33-002	
	1-2'	2-3'	3-5	1-2'	2-3'	
Compound/Analyte	WT ~ 12'	WT ~ 12'	WT ~ 12'	WT~NE	WT ~ NE	
1		TCL VOCs (ms	/kg)			
Acetone	NA	NA NA	NA NA	NA	NA	
Benzene	0.002U	0.002U	0.002U	0.002	0.008	
Bromodichloromethane	NA	NA	NA	NA	NA	
Bromoform	NA	NA	NA	NA	NA	
Bromomethane	NA	NA	NA	ÑÁ	NA	
-Butanone	NA	NA	NA	NA	NA	
Carbon Disulfide	NA	NA	NA	NA	NA	
Carbon Tetrachloride	NA	NA	NA	NA	NA	
hlorobenzene	NA	NA	NA	NA	NA	
Chlorodibromomethane	NA	NA	NA	NA	NA	
Chloroethane	NA	NA	NA	NA	NA	
Chloroform	NA	NA	NA:	NA NA	NA NA	
Chloromethane	NA	NA	NA NA	NA NA	NA NA	
,1-Dichloroethane	NA NA	NA NA	NA NA	NA NA	NA NA	
,2-Dichloroethane	NA NA	NA NA	NA NA	NA NA	NA NA	
,1-Dichloroethene	NA NA	NA NA	NA NA	NA NA	NA NA	
is-1,2-Dichloroethene rans-1,2-Dichloroethene	NA NA	NA NA	NA NA	NA NA	NA NA	
	NA NA	NA NA	NA NA	NA NA	NA NA	
,2-Dichloropropane is-1,3-Dichloropropene	NA NA	NA NA	NA NA	NA NA	NA NA	
rans-1,3-Dichloropropene	NA NA	NA NA	NA NA	NA NA	NA NA	
thylBenzene	0.005U	0.005U	0.005U	0.005U	0.005U	
-hexanone	NA NA	NA NA	NA	NA	NA	
-methyl-2-pentanone	NA NA	NA NA	NA	NA	NA	
Methylene Chloride	NA	NA	NA	NA	NA	
tyrene	0.005U	0.005U	0.005U	0.005U	0.005U	
,1,2,2-Tetrachloroethane	NA	NA	NA	NA	NA	
etrachloroethene	NA	NA	NA	NA	NA	
oluene	0.005U	0.005U	0.005U	0.005U	0.005U	
,1,1-Trichloroethane	NA	NA	NA	NA	NA	
,1,2-Trichloroethane	NA	NA	NA	NA	NA	
richloroethene	NA	NA	NA	NA	NA	
/inyl Acetate	NA	NA	NA	NA	NA	
inyl Chloride	NA	NA	NA	NA 0.00511	NA 0.009	
(ylenes (total)	0.005U	0.005U	0.005U	0.005U	0.009	
(N) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NA	TCL SVOCs (m	NA	NA	NA	
-Chloro-3-methylphenol -Chlorophenol	NA NA	NA NA	NA NA	NA NA	NA NA	
.4-Dimethylphenol	NA NA	NA NA	NA NA	NA NA	NA NA	
,4-Dinitrophenol	NA NA	NA NA	NA NA	NA NA	NA NA	
,6-Dinitro-2-Methylphenol	NA NA	NA NA	NA NA	NA	NA	
-Methylphenol	NA NA	NA NA	NA	NA	NA	
&4-Methylphenol	NA NA	NA NA	NA	NA	NA	
-Nitrophenol	NA	NA	NA	NA	NA	
-Nitrophenol	NA	NA	NA	NA	NA	
entachlorophenol	NA	NA	NA	NA	NA	
henol	NA	NA	NA	NA	NA	
,4,5-Trichlorophenol	NA	NA	NA	NA	NA	
,4,6-Trichlorophenol	NA	NA	NA	NA	NA	
cenaphthene	0.025U	0.025U	0.025U	0.070	0.025U	
cenaphthylene	0.025U	0.025U	0.025U	0.030	0.025U	
nthracene	0.025U	0.025U	0.025U	0.086	0.025U	
enzo[a]anthracene	0.025U	0.025U	0.025U	0.057	0.032	
enzo[b]fluoranthene	0.025U	0.025U	0.025U	0.026	0.026	
enzo[k]fluoranthene	0.025U	0.025U	0.025U	0.036	0.025U	
enzo[g,h,i]perylene	0.025U	0.025U	0.025U	0.029	0.025U	
enzo[a]pyrene	0.025U	0.025U	0.025U	0.049	0.030 NA	
utylbenzylphalate	NA NA	NA	NA NA	NA NA		
is(2-chloroethoxy)methane	NA NA	NA NA	NA NA	NA NA	NA NA	
	NA	NA	NA	NA		
	\$7.1					
is(2-chloroisopropyl) ether	NA	NA NA	NA NA	NA NA	NA NA	
is(2-chloroethyl) ether bis(2-chloroisopropyl) ether bis(2-ethylhexyl)phyhalate -bromaphenylphenylether	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	

	Sample	Location and Depth (f	eet below ground surf	ace)/Concentration					
	RPM-SB32-001	RPM-SB32-002	RPM-SB32-003	RPM-SB33-001	RPM-SB33-002				
	1-2'	2-3'	3-5'	1-2'	2-3'				
Compound/Analyte	WT ~ 12'	WT ~ 12'	WT ~ 12'	WT ~ NE	WT ~ NE				
***************************************		CL SVOCs - Continu	ed (mg/kg)	P					
2-Chloronaphthalene	NA	NA	NA	NA	NA				
1-Chlorophenyl-phenylether	NA	NA	NA	NA	NA				
4-Chloroaniline	NA	NA	NA	NA	NA				
Chrysene	0.025U	0.025U	0.025U	0.065	0.037				
Dibenz[a,h]anthracene	0.025U	0.025U	0.025U	0.025U	0.025U				
Dibenzofuran	NA	NA .	NA	NA	NA				
Di-n-butylphthalate	NA	NA	NA	NA	NA				
1,2-Dichlorobenzene	NA	NA	NA	NA	NA NA				
1,3-Dichlorobenzene	NA	NA	NA NA	NA NA	NA NA				
1,4-Dichlorobenzene	NA	NA NA	NA NA	NA NA	NA NA				
3,3-Dichlorobenzidine	NA NA	NA NA	NA NA	NA NA	NA NA				
2,4-Dichlorophenol	NA NA	NA NA	NA NA	NA NA	NA NA				
Diethylphthalate Dimethylphtalate	NA NA	NA NA	NA NA	NA NA	NA NA				
2.4-Dinitrotoluene	NA NA	NA NA	NA NA	NA NA	NA.				
2,6-Dinitrotoluene	NA NA	NA NA	NA NA	NA	NA				
Di-n-octylphthalate	NA NA	NA NA	NA	NA	NA				
Fluoranthene	0.025U	0.025U	0.025U	0.079	0.025U				
Fluorene	0.025U	0.025U	0.025U	0.098	0.025U				
Hexachlorobenzene	NA	NA	NA	NA	NA				
Hexachlorobutadiene	NA	NA	NA	NA	NA				
Hexachlorocyclopentadiene	NA	NA	NA	NA	NA				
Hexachloroethane	· NA	NA	NA	NA	NA				
Indeno[1,2,3-cd]pyrene	0.025U	0.025U	0.025U	0.026	0.025U				
Isophorone	NA	NA	NA	NA NA	NA				
2-Methylnaphthalene	NA	NA	NA	NA 0.122	NA 0.132				
Naphthalene	0.025U	0.025U	0.025U	0.122 NA	NA				
2-Nitroaniline	NA NA	NA NA	NA NA	NA NA	NA NA				
3-Nitroaniline 4-Nitroaniline	NA NA	NA NA	NA NA	NA NA	NA NA				
Nitrobenzene	NA NA	NA NA	NA NA	NA NA	NA				
N-nitrosodi-n-propylamine	NA NA	NA	NA	NA	NA				
N-nitrosodimethylamine	NA NA	NA	NA	NA	NA				
N-nitrosodiphenylamine	NA	NA	NA	NA	NA				
Phenanthrene	0.025U	0.025U	0.025U	0.306	0.083				
Pyrene	0.025U	0.025U	0.025U	0.101	0.055				
1,2,4-Trichlorobenzene	NA	NA	NA	NA	NA				
		Priority Pollutant Metals (mg/kg)							
Antimony	NA	NA	NA	NA	NA 1380				
Arsenic	3.550	2.050	8.100	5.020	4.200				
Barium	66.300	58.800	42.500	59.300	39.000 NA				
Beryllium	NA 0.500U	NA 0.500U	NA 0.500U	NA 0.500U	0.500U				
Cadmium	0.500U 20.100	0.500U 20.900	22.600	14.200	11.900				
Chromium	20.100 NA	20.900 NA	22.600 NA	NA	NA				
Copper Lead	21.800	16.300	13.500	179.000	240.000				
Mercury	0.040U	0.040U	0.040U	0.040U	0.040U				
Nickel	NA	NA NA	NA NA	NA	NA				
Selenium	1.000U	1.000U	1.000U	1.000U	1.000U				
Silver	0.500U	0.500U	0.500U	0.512	0.500U				
Thallium	NA	NA	NA	NA	NA				
Zinc	NA	NA	NA	NA	NA				
Total Cyanide	0.25U	0.25U	0.25U	0.25U	0.25U				
	S	PLP Lead and Chrom	ium (mg/L)						
SPLP Lead	NA	NA	NA	0.206	0.015				
SPLP Chromium	NA	NA	NA	NA	NA				
		PCBs (mg/kg	g)						
Aroclor 1016	NA	NA	NA	. NA	NA				
Aroclor 1221	NA	NA NA	NA	NA	NA				
Aroclor 1221	NA NA	NA NA	NA NA	NA NA	NA				
	NA NA	NA NA	NA NA	NA NA	NA NA				
Aroclor 1242					NA NA				
Aroclor 1248	NA	NA	NA NA	NA NA					
Aroclor 1254 Aroclor 1260	NA	NA	NA	NA NA	NA NA				
	NA NA	. NA	NA I	NA	NA				

		Location and Depth (f	RPM-SB34-001	RPM-SB39-001	RPM-SB39-003
	RPM-SB33-003	RPM-SB33-004			l .
	3-5'	7-9'	5-7'	0-1'	2-3'
Compound/Analyte	WT~NE	WT~NE	WT ~ NE	WT ~ NE	WT ~ NE
		TCL VOCs (mg		0.626J	0.025U
Acetone	NA 0.000M	NA 0.093	NA 0.006	0.626J 0.005U	0.025U
Benzene Bromodichloromethane	0.002U NA	NA	NA	0.005U	0.005U
Bromoform	NA NA	NA NA	NA NA	0.005U	0.005U
Bromomethane	NA	NA	NA	0.010U	0.010U
2-Butanone	NA	NA	NA	0.077	0.010U
Carbon Disulfide	NA	NA	NA	0.005	0.005U
Carbon Tetrachloride	NA	NA	NA	0.005U	0.005U
Chlorobenzene	NA NA	NA NA	NA NA	0.005U 0.005U	0.005U 0.005U
Chlorodibromomethane	NA NA	NA NA	NA NA	0.003U	0.003U
Chloroethane Chloroform	NA NA	NA NA	NA NA	0.005U	0.005U
Chloromethane	NA NA	NA NA	NA	0.010U	0.010U
,1-Dichloroethane	NA NA	NA	NA	0.005U	0.005U
,2-Dichloroethane	NA	NA	NA	0.005U	0.005U
,1-Dichloroethene	NA	NA	NA	0.005U	0.005U
is-1,2-Dichloroethene	NA	NA	NA	0.005U	0.005U
rans-1,2-Dichloroethene	NA	NA NA	NA NA	0.005U 0.005U	0.005U 0.005U
,2-Dichloropropane	NA NA	NA NA	NA NA	0.005U 0.005U	0.005U
rans-1,3-Dichloropropene	NA NA	NA NA	NA NA	0.005U	0.005U
EthylBenzene	0.005U	2.150	0.005U	0.005U	0.005U
2-hexanone	NA NA	NA NA	NA	0.010U	0.010U
-methyl-2-pentanone	NA	NA	NA	0.010U	0.010U
Methylene Chloride	NA	NA	NA	0.010U	0.010U
Styrene	0.005U	0.05U	0.005U	0.005ป	0.005U
,1,2,2-Tetrachloroethane	NA	NA	NA NA	0.005U	0.005U
etrachloroethene	NA 0.005U	NA 0.132	NA 0.005U	0.005U 0.005U	0.005U 0.005U
oluene	0.005U NA	0.132 NA	0.003C NA	0.005U	0.005U
,1,1-Trichloroethane .1,2-Trichloroethane	NA NA	NA NA	NA NA	0.005U	0.005U
Frichloroethene	NA NA	NA NA	NA	0.005U	0.005U
/inyl Acetate	NA	NA	NA	0.010U	0.010U
Vinyl Chloride	NA	NA	NA	0.010U	0.010U
(ylenes (total)	0.005U	4.540	NA	0.005U	0.014
	, , , , , , , , , , , , , , , , , , , ,	TCL SVOCs (m		NA	NA
-Chloro-3-methylphenol	NA NA	NA NA	NA NA	NA NA	NA NA
-Chlorophenol .4-Dimethylphenol	NA NA	NA NA	NA NA	NA NA	NA NA
,4-Dinitrophenol	NA NA	NA NA	NA NA	NA	NA
,6-Dinitro-2-Methylphenol	NA NA	NA	NA	NA	NA
-Methylphenol	NA	NA	NA	NA	NA
&4-Methylphenol	NA	NA	NA	NA	NA
-Nitrophenol	NA	NA	NA	NA_	NA
-Nitrophenol	NA NA	NA NA	NA NA	NA NA	NA NA
Pentachlorophenol	NA NA	NA NA	NA NA	NA NA	NA NA
Phenol 2,4,5-Trichlorophenol	NA NA	NA NA	NA NA	NA NA	NA NA
.,4,5-Trichlorophenol	NA NA	NA NA	NA NA	NA	NA
Acenaphthene	0.025U	0.025U	0.025U	0.025U	0.025U
Acenaphthylene	0.025U	0.025U	0.025U	0.025U	0.025U
Anthracene	0.025U	0.025U	0.025U	0.025U	0.025U
Benzo[a]anthracene	0.025U	0.025U	0.025U	0.025U	0.025U 0.025U
Benzo[b]fluoranthene	0.025U	0.025U 0.025U	0.025U 0.025U	0.025U 0.025U	0.025U 0.025U
Benzo[k]fluoranthene	0.025U 0.025U	0.025U 0.025U	0.025U 0.025U	0.025U	0.025U
Benzo[g,h,i]perylene Benzo[a]pyrene	0.025U	0.025U	0.025U	0.025U	0.025U
Butylbenzylphalate	NA	0.0250 NA	NA NA	NA NA	NA
is(2-chloroethoxy)methane	NA NA	NA NA	NA	NA	NA
is(2-chloroethyl) ether	NA	NA	NA	NA	NA
Bis(2-chloroisopropyl) ether	NA	NA	NA	NA	NA
3is(2-ethylhexyl)phyhalate	NA	NA	NA	NA	NA
-bromaphenylphenylether	NA NA	NA NA	NA NA	NA NA	NA NA

		Location and Depth (
	RPM-SB33-003	RPM-SB33-004	RPM-SB34-001	RPM-SB39-001	RPM-SB39-003
	3-5'	7-9'	5-7'	0-1'	2-3'
Compound/Analyte	WT ~ NE	WT ~ NE	WT ~ NE	WT ~ NE	WT ~ NE
	1	CL SVOCs - Continu	ied (mg/kg)		
-Chloronaphthalene	NA	NA	NA	NA	NA
-Chlorophenyl-phenylether	NA	NA	NA	NA	NA
-Chloroaniline	NA	NA	NA	NA	NA
hrysene	0.025U	0.025U	0.025U	0.027	0.025U
Pibenz[a,h]anthracene	0.025U	0.025U	0.025U	0.025U	0.025U
Dibenzofuran	NA	NA	NA	NA	NA
i-n-butylphthalate	NA	NA	NA	NA	NA
,2-Dichlorobenzene	NA	NA	NA .	NA	NA
,3-Dichlorobenzene	NA	NA	NA	NA	NA
,4-Dichlorobenzene	NA	NA	NA	NA	NA
3-Dichlorobenzidine	NA	NA	NA	NA	NA
,4-Dichlorophenol	NA	NA	NA	NA	NA
iethylphthalate	NA	NA	NA	NA	NA
imethylphtalate	NA	NA	NA	NA	NA
4-Dinitrotoluene	NA	NA	NA	NA	NA
6-Dinitrotoluene	NA	NA	NA	NA	NA
i-n-octylphthalate	NA	NA	NA	NA	NA
luoranthene	0.025U	0.025U	0.025U	0.038	0.025U
luorene	0.025U	0.025U	0.025U	0.025U	0.025U
[exachlorobenzene	NA	NA	NA	NA	NA
lexachlorobutadiene	NA	NA	NA	NA	NA
lexachlorocyclopentadiene	NA	NA	NA	NA	NA
exachloroethane	NA	NA	NA	NA	NA
ndeno[1,2,3-cd]pyrene	0.025U	0.025U	0.025U	0.025U	0.025U
sophorone	NA	NA	NA	NA	NA
Methylnaphthalene	NA	NA	NA	NA	NA
aphthalene	0.025U	0.025U	0.025U	0.025U	0.025U
-Nitroaniline	NA	NA	NA	NA	NA
-Nitroaniline	NA	NA	NA	NA	NA
-Nitroaniline	NA	NA	NA	NA	NA
itrobenzene	NA	NA	NA NA	NA	NA
-nitrosodi-n-propylamine	NA	NA	NA	NA	NA
-nitrosodimethylamine	NA	NA	NA	NA	NA
l-nitrosodiphenylamine	NA	NA	NA	NA	NA
henanthrene	0.025U	0.025U	0.025U	0.025U	0.025U
yrene	0.025U	0.025U	0.025U	0.029	0.025U
,2,4-Trichlorobenzene	NA	NA	NA	NA	NA
		Priority Pollutant Met			
intimony	NA	NA	NA	NA	NA
rsenic	9.920	6.740	8.62	16.70	2.68
arium	52.000	46.700	54.50	85.50	58.70
eryllium	NA	NA	NA	NA	NA
Cadmium	0.500U	0.500U	0.500U	0.500U	0.500U
hromium	14.000	18.800	22.50	20.70	21.30
opper	NA	NA	NA NA	NA 27.00	NA 15.00
ead	12.400	91.100	15.40	27.90	15.90
lercury	0.040U	0.040U	0.040U	0.040U	0.040U
ickel	NA	NA	NA	NA 1 00V	NA 1 cour
elenium	1.000U	1.000U	1.00U	1.00U	1.00U
ilver	0.500U	0.500U	0.500U	0.500U	0.500U
hallium	NA	NA	NA	NA NA	NA NA
inc	NA	NA	NA	NA 0.25V	NA 0.25H
otal Cyanide	0.25U	0.25U	0.25U	0.25U	0.25U
		SPLP Lead and Chron		1 321	
PLP Lead	NA	0.005U	NA	NA	NA
PLP Chromium	NA	NA	NA	NA	NA
		PCBs (mg/k	g)		
	NA	NA	NA	NA	NA
roclor 1016	1 47/3	NA NA	NA NA	NA NA	NA
	NT A		14/1		NA NA
roclor 1221	NA NA		N7 4		
roclor 1016 roclor 1221 roclor 1232	NA	NA	NA	NA NA	
roclor 1221 roclor 1232	NA NA	NA NA	NA	NA	NA
roclor 1221 roclor 1232 roclor 1242	NA	NA	NA NA	NA NA	NA NA
roclor 1221	NA NA	NA NA	NA	NA	NA

		Location and Depth (eet below ground surf	DDM CD 40 003	DDM CD41 OO1
	RPM-SB39-003	RPM-SB40-001	RPM-SB40-002	RPM-SB40-003	RPM-SB41-001
	3-5'	0-1'	2-3'	7-9'	3-5'
Compound/Analyte	WT~NE	WT ~ NE	WT ~ NE	WT ~ NE	WT ~ NE
		TCL VOCs (mg			
cetone	0.131	0.265	0.107	0.060	NA 0.00211
enzene	0.005U	0.005U	0.005U	0.005U	0.002U NA
romodichloromethane	0.005U	0.005U	0.005U	0.005U 0.005U	NA NA
romoform	0.005U	0.005U	0.005U 0.010U	0.003U	NA NA
romomethane	0.010U	0.010U 0.029	0.0100	0.013	NA NA
-Butanone	0.016 0.059	0.029 0.005U	0.020	0.005U	NA NA
arbon Disulfide arbon Tetrachloride	0.005U	0.005U	0.005U	0.005U	NA
Chlorobenzene	0.005U	0.005U	0.005U	0.005U	NA
hlorodibromomethane	0.005U	0.005U	0.005U	0.005U	NA
hloroethane	0.010U	0.010U	0.010U	0.010U	NA
hloroform	0.005U	0.005U	0.005U	0.005U	NA
hloromethane	0.010U	0.010U	0.010U	0.010U	NA
,1-Dichloroethane	0.005U	0.005U	0.005U	0.005U	NA
,2-Dichloroethane	0.005U	0.005U	0.005U	0.005U	NA NA
,1-Dichloroethene	0.005U	0.005U	0.005U	0.005U	NA NA
is-1,2-Dichloroethene	0.4443	0.005U	0.005U	0.104	NA NA
ans-1,2-Dichloroethene	0.005U	0.005U	0.005U	0.013 0.005U	NA NA
,2-Dichloropropane	0.005U	0.005U	0.005U 0.005U	0.005U	NA NA
is-1,3-Dichloropropene	0.005U	0.005U 0.005U	0.005U	0.005U	NA NA
rans-1,3-Dichloropropene	0.005U 0.005U	0.005U	0.005U	0.005U	0.005U
thylBenzene	0.003U	0.010U	0.010U	0.010U	NA
-hexanone -methyl-2-pentanone	0.010U	0.010U	0.010U	0.010U	NA
Methylene Chloride	0.010U	0.010U	0.010U	0.010U	NA
tyrene	0.005U	0.005U	0.005U	0.005U	NA
.1.2.2-Tetrachloroethane	0.005U	0.005U	0.005U	0.005U	NA
etrachloroethene	0.005U	0.005U	0.005U	0.005U	NA
oluene	0.005U	0.005U	0.005U	0.005U	0.005U
,1,1-Trichloroethane	0.005U	0.005U	0.005U	0.005U	NA
,1,2-Trichloroethane	0.005U	0.005U	0.005U	0.005U	NA NA
richloroethene	0.024	0.005U	0.005U	0.080 0.010U	NA NA
/inyl Acetate	0.010U	0.010U	0.010U 0.010U	0.010U	NA NA
/inyl Chloride	0.030	0.010U 0.005U	0.010U	0.010U	0.005U
(ylenes (total)	0.005Ü	TCL SVOCs (m		0.0030	1
-Chloro-3-methylphenol	NA NA	NA NA	NA NA	NA	NA
-Chlorophenol	NA NA	NA	NA	NA	NA
.4-Dimethylphenol	NA NA	NA	NA	NA	NA
,4-Dinitrophenol	NA	NA	NA	NA	NA
,6-Dinitro-2-Methylphenol	NA	NA	NA	NA	NA
-Methylphenol	NA	NA	NA	NA	NA
&4-Methylphenol	NA	NA	NA	NA NA	NA NA
?-Nitrophenol	NA	NA_	NA NA	NA NA	NA NA
-Nitrophenol	NA	NA NA	NA NA	NA NA	NA NA
Pentachlorophenol	NA NA	NA NA	NA NA	NA NA	NA NA
Phenol	NA NA	NA NA	NA NA	NA NA	NA NA
2,4,5-Trichlorophenol	NA NA	NA NA	NA NA	NA NA	NA
,4,6-Trichlorophenol Acenaphthene	0.025U	0.025U	0.025U	0.025U	0.025U
Acenaphthylene	0.025U	0.025U	0.025U	0.025U	0.025U
Anthracene	0.025U	0.025U	0.025U	0.025U	0.025U
Benzo[a]anthracene	0.025U	0.025U	0.025U	0.025U	0.025U
enzo[b]fluoranthene	0.025U	0.025U	0.025U	0.025U	0.025U
enzo[k]fluoranthene	0.025U	0.025U	0.025U	0.025U	0.025U
enzo[g,h,i]perylene	0.025U	0.025U	0.025U	0.025U	0.025U
Benzo[a]pyrene	0.025U	0.025U	0.025U	0.025U	0.025U
Butylbenzylphalate	NA	NA	NA	NA	NA NA
is(2-chloroethoxy)methane	NA	NA	NA VA	NA	NA NA
is(2-chloroethyl) ether	NA	NA NA	NA NA	NA NA	NA NA
Bis(2-chloroisopropyl) ether	NA	NA NA	NA NA	NA NA	NA NA
3is(2-ethylhexyl)phyhalate	NA	NA NA	NA NA	NA NA	NA NA
-bromaphenylphenylether Carbazole	NA NA	NA NA	NA NA	NA NA	NA NA

		Location and Depth (I	RPM-SB40-002	RPM-SB40-003	RPM-SB41-001
	RPM-SB39-003	RPM-SB40-001		7-9'	3-5'
	3-5'	0-1'	2-3'	7-9 WT ~ NE	3-3 WT ~ NE
Compound/Analyte	WT~NE	WT~NE	WT ~ NE	WI~INE	WIND
Chlausnamhthalana	NA	TCL SVOCs - Continu	NA NA	NA	NA
-Chloronaphthalene -Chlorophenyl-phenylether	NA NA	NA NA	NA NA	NA NA	NA
-Chloroaniline	NA NA	NA	NA	NA	NA
Chrysene	0.025U	0.025U	0.025U	0.025U	0.025U
Dibenz[a,h]anthracene	0.025U	0.025U	0.025U	0.025U	0.025U
Dibenzofuran	NA	NA	NA	NA	NA
Di-n-butylphthalate	NA	NA	NA	NA	NA
,2-Dichlorobenzene	NA	NA	NA	NA	NA
,3-Dichlorobenzene	NA	NA	NA	NA	NA
,4-Dichlorobenzene	NA	NA	NA	NA	NA
,3-Dichlorobenzidine	NA	NA	NA	NA	NA NA
,4-Dichlorophenol	NA	NA NA	NA	NA NA	NA NA
Diethylphthalate	NA NA	NA	NA NA	NA NA	NA NA
Dimethylphtalate	NA NA	NA NA	NA NA	NA NA	NA NA
,4-Dinitrotoluene	NA NA	NA NA	NA NA	NA NA	NA NA
,6-Dinitrotoluene	NA NA	NA NA	NA NA	NA NA	NA NA
Di-n-octylphthalate	0.025U	0.025U	0.025U	0.025U	0.025U
luoranmene	0.025U	0.025U	0.025U	0.025U	0.025U
Iexachlorobenzene	NA NA	NA NA	NA	NA	NA
-fexachlorobutadiene	NA NA	NA NA	NA	NA	NA
fexachlorocyclopentadiene	NA	NA	NA	NA	NA
Hexachloroethane	NA	NA	NA	NA	NA
ndeno[1,2,3-cd]pyrene	-0.025U	0.025U	0.025U	0.025U	0.025U
sophorone	NA	NA	NA	NA	NA
-Methylnaphthalene	NA	NA	NA	NA	NA
Vaphthalene	0.025U	0.025U	0.025U	0.025U	0.025U
-Nitroaniline	NA	NA	NA NA	NA NA	NA NA
-Nitroaniline	NA NA	NA NA	NA	NA NA	NA NA
-Nitroaniline	NA NA	NA NA	NA NA	NA NA	NA NA
Vitrobenzene	NA NA	NA NA	NA NA	NA NA	NA NA
N-nitrosodi-n-propylamine N-nitrosodimethylamine	NA NA	NA NA	NA NA	NA	NA
N-nitrosodiphenylamine	NA NA	NA NA	NA	NA	NA
Phenanthrene	0.025U	0.025U	0.025U	0.025U	0.025U
vrene	0.025U	0.025U	0.025U	0.025U	0.025U
,2,4-Trichlorobenzene	NA	NA	NA	NA	NA
	<u> </u>	Priority Pollutant Met	als (mg/kg)		
Antimony	NA	NA	NA	NA	NA
Arsenic	2.54	3.74	5.34	11.50	7.56
Barium	59.90	54.10	52.60	54.10	73.30
Beryllium	NA	NA .	NA 0.500U	0.500U	0.500U
Cadmium	0.500U	0.500U	0.500U	20.40	19.50
Chromium	20.40	17.50 NA	22.00 NA	20.40 NA	19.50 NA
Copper	NA 14.10	24.60	15.00	15.10	15.30
_ead Mercury	0.040U	0.101	0.040U	0.040U	0.047
viercury	NA	NA NA	NA NA	NA	NA
Selenium	1.00U	1.00U	1.00U	1.00U	1.00U
Silver	0.500U	0.500U	0.500U	0.500U	0.500U
Thallium	NA	• NA	NA	NA	NA
linc	NA	NA	NA	NA	NA
otal Cyanide	0.25U	0.25U	0.25U	0.25U	0.25U
		SPLP Lead and Chron			
PLP Lead	NA	NA	NA	NA	NA
PLP Chromium	NA	NA	NA	NA	NA
		PCBs (mg/k			
Aroclor 1016	NA	NA	NA	NA	NA
Aroclor 1221	NA	NA	NA	NA	NA
croclor 1232	NA	NA	NA	NA	NA
Aroclor 1242	NA	NA	NA	NA	NA
Aroclor 1248	NA NA	NA	NA	NA	NA
Aroclor 1248 Aroclor 1254	NA NA	NA NA	NA NA	NA NA	NA
	II 17/4	11/3	1.473		

70000	Sample	ace)/Concentration	tration		
	RPM-SB42-001	RPM-SB42-002	RPM-SB43-001	RPM-SB44-001	RPM-SB44-002
	2-3'	3-5'	5-7'	2-3	5-7'
Compound/Analyte	WT ~ NE	WT ~ NE	WT ~ NE	WT ~ NE	WT ~ NE
The state of the s	IL _{ETTER}	TCL VOCs (mg	/kg)	,	
Acetone	NA	NA NA	NA NA	NA	NA
Benzene	0.002U	0.002U	0.003J	0.002U	0.002U
Bromodichloromethane	NA	NA	NA	NA	NA
Bromoform	NA	NA	NA	NA	NA
Bromomethane	NA	NA	NA NA	NA NA	NA NA
2-Butanone	NA	NA	NA NA	NA NA	NA NA
Carbon Disulfide	NA NA	NA NA	NA NA	NA NA	NA NA
Carbon Tetrachloride	NA NA	NA NA	NA NA	NA NA	NA NA
Chlorodibromomethane	NA NA	NA NA	NA NA	NA NA	NA
Chloroethane	NA NA	NA	NA	NA	NA
Chloroform	NA	NA	NÄ	NA	NA
Chloromethane	NA	NA	NA	NA	NA
,1-Dichloroethane	NA	NA	NA	NA	NA NA
,2-Dichloroethane	NA	NA	NA	NA NA	NA NA
,1-Dichloroethene	NA	NA NA	NA NA	NA NA	NA NA
cis-1,2-Dichloroethene	NA NA	NA NA	NA NA	NA NA	NA NA
rans-1,2-Dichloroethene	NA NA	NA NA	NA NA	NA NA	NA NA
,2-Dichloropropane cis-1,3-Dichloropropene	NA NA	NA NA	NA NA	NA NA	NA
rans-1,3-Dichloropropene	NA NA	NA	NA	NA	NA
EthylBenzene	0.005U	0.005U	0.005ÜJ	0.005U	0.005U
2-hexanone	NA	NA	NA	NA	NA
-methyl-2-pentanone	NA	NA	NA	NA	NA
Methylene Chloride	NA	NA	NA	NA NA	NA NA
Styrene	NA	NA NA	NA NA	NA NA	NA NA
1,1,2,2-Tetrachloroethane	NA NA	NA NA	NA NA	NA NA	NA NA
Tetrachloroethene Toluene	0.005U	0.005U	0.005UJ	0.005U	0.005U
1,1,1-Trichloroethane	NA NA	NA NA	NA	NA	NA
1.1.2-Trichloroethane	NA	NA	NA	NA	NA
Frichloroethene	NA	NA	NA	NA	NA
Vinyl Acetate	NA	NA	NA	NA	NA
Vinyl Chloride	NA	NA	NA	NA 0.005U	NA 0.005U
Xylenes (total)	0.005U	0.005U	0.005UJ	0.005U	0.0030
	II NA	TCL SVOCs (m NA	g/kg) NA	NA NA	I NA
4-Chloro-3-methylphenol 2-Chlorophenol	NA NA	NA NA	NA NA	NA NA	NA
2.4-Dimethylphenol	NA NA	NA NA	NA NA	NA	NA
2,4-Dinitrophenol	NA NA	NA	NA	NA	NA
1,6-Dinitro-2-Methylphenol	NA	NA	NA	NA	NA
2-Methylphenol	NA	NA	NA	NA	NA
3&4-Methylphenol	NA	NA	NA NA	NA NA	NA NA
2-Nitrophenol	NA NA	NA NA	NA	NA NA	NA NA
1-Nitrophenol	NA NA	NA NA	NA NA	NA NA	NA NA
Pentachlorophenol	NA NA	NA NA	NA NA	NA NA	NA NA
Phenol 2,4,5-Trichlorophenol	NA NA	NA NA	NA NA	NA NA	NA
2,4,6-Trichlorophenol	NA NA	NA NA	NA	NA	NA
Acenaphthene	0.025U	0.025U	0.025U	0.025U	0.025UJ
Acenaphthylene	0.025U	0.025U	0.025U	0.039	0.025UJ
Anthracene	0.025U	0.025U	0.025U	0.025U	0.025UJ
Benzo[a]anthracene	0.025U	0.025U	0.025U	0.087	0.025UJ
Benzo[b]fluoranthene	0.025U	0.025U	0.025U	0.046	0.025UJ 0.025UJ
Benzo[k]fluoranthene	0.025U	0.025U 0.025U	0.025U 0.025U	0.046	0.025UJ
Benzo[g,h,i]perylene	0.025U		0.025U	0.033	0.025UJ
Benzo[a]pyrene	0.025U NA	0.025U NA	0.0230 NA	NA NA	NA NA
Butylbenzylphalate pis(2-chloroethoxy)methane	NA NA	NA NA	NA NA	NA NA	NA
ois(2-chloroethyl) ether	NA NA	NA NA	NA NA	NA	NA
Bis(2-chloroisopropyl) ether	NA NA	NA NA	NA	NA	NA
Bis(2-ethylhexyl)phyhalate	NA NA	NA	NA	NA	NA
4-bromaphenylphenylether	NA	NA	NA	NA	NA
Carbazole	NA	NA	NA	NA	NA

			eet below ground surf		
	RPM-SB42-001	RPM-SB42-002	RPM-SB43-001	RPM-SB44-001	RPM-SB44-00
	2-3'	3-5'	5-7'	2-3'	5-7
Compound/Analyte	WT ~ NE	WT ~ NE	WT ~ NE	WT ~ NE	WT ~ NE
		TCL SVOCs - Continu	ied (mg/kg)		
Chloronaphthalene	NA	NA	NA	NA	NA
Chlorophenyl-phenylether	NA	NA	NA	NA	NA
Chloroaniline	NA	NA	NA	NA	NA
hrysene	0.025U	0.025U	0.025U	0.153	0.025UJ
ibenz[a,h]anthracene	0.025U	0.025U	0.025U	0.025U	0.025UJ
ibenzofuran	NA	NA	NA	NA	NA NA
i-n-butylphthalate	NA	NA	NA NA	NA NA	NA NA
2-Dichlorobenzene	NA	NA	NA	NA	NA NA
3-Dichlorobenzene	NA	NA	NA NA	NA NA	NA NA
4-Dichlorobenzene	NA NA	NA NA	NA NA	NA NA	NA NA
3-Dichlorobenzidine	NA	NA	NA NA	NA NA	NA NA
4-Dichlorophenol	NA	NA NA	NA NA	NA NA	NA NA
iethylphthalate	NA	NA NA	NA NA	NA NA	NA NA
imethylphtalate	NA NA	NA NA	NA NA	NA NA	NA
4-Dinitrotoluene	NA NA	NA NA	NA NA	NA NA	NA NA
6-Dinitrotoluene	NA NA	NA NA	NA NA	NA NA	NA
i-n-octylphthalate	0.030	0.025U	0.025U	0.114	0.025UJ
uoranthene uorene	0.030 0.025U	0.025U	0.025U	0.025U	0.025UJ
uorene exachlorobenzene	NA	0.0250 NA	NA	NA NA	NA
exachlorobutadiene	NA NA	NA NA	NA NA	NA	NA
exachlorocyclopentadiene	NA NA	NA NA	NA	NA	NA
exachloroethane	NA NA	NA	NA	NA	NA
ideno[1,2,3-cd]pyrene	0.025U	0.025U	0.025U	0.030	0.025UJ
ophorone	NA	NA	NA	NA	NA
-Methylnaphthalene	NA	NA	NA	NA	NA
aphthalene	0.025U	0.025U	0.025U	0.025U	0.025UJ
Nitroaniline	NA	NA	NA	NA	NA
Nitroaniline	NA	NA	NA	NA	NA
Nitroaniline	NA	NA	NA	NA	NA
itrobenzene	NA	NA	NA	NA	NA
-nitrosodi-n-propylamine	NA	NA	NA	NA	NA
-nitrosodimethylamine	NA	NA	NA	NA	NA
-nitrosodiphenylamine	NA	NA	NA	NA 0.000	NA 0.035111
henanthrene	0.025U	0.025U	0.025U	0.098	0.025UJ 0.025UJ
yrene	0.025U	0.025U	0.025U	0.157	0.02303 NA
,2,4-Trichlorobenzene	NA NA	NA Di i Di i Ma	NA	NA	NA .
		Priority Pollutant Met	ais (mg/kg) NA	NA	NA
ntimony	NA 180	NA 2.65	10.20	7.17	4.13
rsenic	4.80	45.20	45.60	89.30	55.20
arium	62.90 NA	43.20 NA	NA	NA	NA
eryllium	0.500U	0.500U	0.500U	0.659	0.500U
admium	20.90	19.60	23.00	21.20	22.00
hromium opper	NA NA	NA	NA NA	NA NA	NA NA
ead	70.60	27.30	17.40	121.00	14.70
lercury	0.044	0.040U	0.040U	0.071	0.040U
ickel	NA NA	NA NA	NA	NA	NA
elenium	1.00U	1.00U	1.00U	1.00U	1.00U
lver	0.500U	0.500U	0.500U	0.500U	0.500U
hallium	NA	NA	NA	NA	NA
nc	NA	NA	NA	NA	NA
otal Cyanide	0.25U	0.25U	0.25U	0.25U	0.25U
		SPLP Lead and Chron	nium (mg/L)		
PLP Lead	0.012	NA	NA	0.006	NA
PLP Chromium	NA	NA	NA	NA	NA
OHOMEN	0	PCBs (mg/k			
la- 1016	NT A	NA NA	NA NA	NA	NA
roclor 1016	NA NA			NA NA	NA NA
roclor 1221	NA	NA	NA NA		
roclor 1232	NA	NA	NA	NA	NA NA
roclor 1242	NA	NA	NA	NA .	NA
roclor 1248	NA	NA	NA	NA	NA
roclor 1254	NA	NA	NA	NA	NA
roclor 1260	NA	NA	NA	NA	NA

				d surface)/Concentrati	OII
	RPM-SB45-001	RPM-SB46-001	RPM-SB46-002	RPM-SB47-001	RPM-SB60-001
	3-5	1-2'	4-6'	5-7'	3-5'
Compound/Analyte	WT ~ NE	WT ~ NE	WT ~ NE	WT ~ 7'	WT ~ NE
		TCL VOCs (mg	g/kg)		
cetone	NA	NA	NA	NA	NA
Benzene	0.002	0.002U	0.003	0.002U	0.004
Bromodichloromethane	NA	NA	NA	NA	NA
Bromoform	NA	NA	NA	NA	NA
Bromomethane	NA	NA	NA	NA	NA
-Butanone	NA	NA	NA	NA	NA
Carbon Disulfide	NA	NA	NA	NA	NA
Carbon Tetrachloride	NA	NA	NA	NA NA	NA NA
Chlorobenzene	NA	NA	NA	NA	NA NA
Chlorodibromomethane	NA	NA NA	NA	NA NA	NA NA
Chloroethane	NA	NA NA	NA NA	NA NA	NA NA
Chloroform	NA NA	NA NA	NA NA	NA NA	NA NA
Chloromethane	NA NA	NA NA	NA NA	NA NA	NA NA
,1-Dichloroethane	NA NA	NA NA	NA NA	NA NA	NA
,2-Dichloroethane ,1-Dichloroethene	NA NA	NA NA	NA NA	NA NA	NA NA
is-1,2-Dichloroethene	NA NA	NA NA	NA NA	NA NA	NA NA
rans-1,2-Dichloroethene	NA NA	NA NA	NA NA	NA NA	NA
,2-Dichloropropane	NA NA	NA NA	NA NA	NA	NA
is-1,3-Dichloropropene	NA NA	NA	NA	NA	NA
rans-1,3-Dichloropropene	NA	NA	NA	NA	NA
thylBenzene	0.005U	0.005U	0.005U	0.005U	0.005U
-hexanone	NA	NA	NA	NA	NA
-methyl-2-pentanone	NA	NA	NA	NA	NA
Methylene Chloride	NA	NA	NA	NA	NA
tyrene	NA	NA	NA	NA	0.005U
,1,2,2-Tetrachloroethane	NA	NA	NA	NA	NA
Tetrachloroethene	NA	NA	NA	NA	NA
l'oluene l'acceptant de la company de la com	0.005U	0.005U	0.005U	0.005U	0.005U
,1,1-Trichloroethane	NA	NA	NA	NA NA	NA NA
,1,2-Trichloroethane	NA NA	NA NA	NA	NA NA	NA NA
Prichloroethene	NA NA	NA NA	NA NA	NA NA	NA NA
/inyl Acetate	NA NA	NA NA	NA NA	NA NA	NA NA
Vinyl Chloride Kylenes (total)	0.005U	0.005U	0.005U	0,005U	0.005U
Cylenes (total)	H 0.0030	TCL SVOCs (m		0.0050	0.0000
-Chloro-3-methylphenol	NA	NA NA	NA NA	NA	NA
2-Chlorophenol	NA NA	NA NA	NA	NA	NA
2.4-Dimethylphenol	NA	NA	NA	NA	NA
,4-Dinitrophenol	NA	NA	NA	NA	NA
,6-Dinitro-2-Methylphenol	NA	NA	NA	NA	NA
2-Methylphenol	NA	NA	NA	NA	NA
&4-Methylphenol	NA	NA	NA	NA	NA
-Nitrophenol	NA	NA	NA	NA	NA
-Nitrophenol	NA	NA	NA	NA	NA
entachlorophenol	NA	NA	NA	NA NA	NA NA
Phenol	NA	NA	NA NA	NA NA	NA NA
,4,5-Trichlorophenol	NA NA	NA NA	NA NA	NA NA	NA NA
,4,6-Trichlorophenol	NA 0.025U	NA 0.025U	NA 0.025U	0.025U	0.037
cenaphthene	0.025U 0.025U	0.025U 0.025U	0.025U	0.025U	0.037
cenaphthylene	0.025U 0.025U	0.025U	0.025U	0.025U	0.093
nthracene enzo[a]anthracene	0.025U	0.025U	0.025U	0.025U	0.044
enzo[a]antnracene enzo[b]fluoranthene	0.025U	0.025U	0.025U	0.025U	0.025U
enzo[k]fluoranthene	0.025U	0.025U	0.025U	0.025U	0.025U
enzo[g,h,i]perylene	0.025U	0.025U	0.025U	0.025U	0.025U
enzo[a]pyrene	0.025U	0.025U	0.025U	0.025U	0.025U
utylbenzylphalate	NA	NA NA	NA NA	NA NA	NA
is(2-chloroethoxy)methane	NA NA	NA NA	NA	NA	NA
is(2-chloroethyl) ether	NA NA	NA NA	NA NA	NA	NA
is(2-chloroisopropyl) ether	NA NA	NA NA	NA	NA	NA
is(2-ethylhexyl)phyhalate	NA	NA	NA	NA	NA
-bromaphenylphenylether	NA NA	NA	NA	NA	NA
arbazole	NA	NA	NA	NA	NA

		ample Location and De			
	RPM-SB45-001	RPM-SB46-001	RPM-SB46-002	RPM-SB47-001	RPM-SB60-001
	3-5'	1-2'	4-6'	5-7'	3-5'
Compound/Analyte	WT ~ NE	WT ~ NE	WT ~ NE	WT ~ 7'	WT ~ NE
		TCL SVOCs - Continu	ied (mg/kg)		
-Chloronaphthalene	NA	NA	NA	NA	NA
-Chlorophenyl-phenylether	NA	NA	NA	NA	NA
-Chloroaniline	. NA	NA	NA	NA	NA
Chrysene	0.025U	0.025U	0.025U	0.025U	0.050
Dibenz[a,h]anthracene	0.025U	0.025U	0.025U	0.025U	0.025U
Dibenzofuran	NA	NA	NA	NA	NA
Pi-n-butylphthalate	NA	NA	NA	NA	NA
,2-Dichlorobenzene	NA	NA	NA	NA	NA
,3-Dichlorobenzene	NA	NA	NA	NA NA	NA
,4-Dichlorobenzene	NA	NA	NA	NA NA	NA
,3-Dichlorobenzidine	NA NA	NA	NA	NA NA	NA NA
,4-Dichlorophenol	NA NA	NA	NA	NA NA	NA NA
Piethylphthalate	NA	NA NA	NA NA	NA NA	NA NA
imethylphtalate	NA NA	NA NA	NA NA	NA NA	NA NA
,4-Dinitrotoluene	NA NA	NA NA	NA NA	NA NA	NA NA
,6-Dinitrotoluene	NA NA	NA NA	NA NA	NA NA	NA NA
Di-n-octylphthalate	0.025U	0.025U	0.025U	0.025U	0.067
luoranthene luorene	0.025U	0.025U	0.025U	0.025U	0.152
luorene Iexachlorobenzene	0.0230 NA	NA	0.0230 NA	NA	NA NA
lexachlorobutadiene	NA NA	NA NA	NA NA	NA NA	NA NA
lexachlorocyclopentadiene	NA NA	NA NA	NA NA	NA	NA
lexachloroethane	NA NA	NA NA	NA	NA	NA
ndeno[1,2,3-cd]pyrene	0.025U	0.025U	0.025U	0.025U	0.025U
sophorone	NA	NA	NA	NA	NA
-Methylnaphthalene	NA	NA	NA	NA	NA
Vaphthalene	0.025U	0.025U	0.025U	0.025U	0.025U
-Nitroaniline	NA	NA	NA	NA	NA
-Nitroaniline	NA	NA	NA	NA	NA
-Nitroaniline	NA	NA	NA	NA	NA
litrobenzene	NA	NA	NA	NA	NA
V-nitrosodi-n-propylamine	NA	NA	NA	NA	NA
l-nitrosodimethylamine	NA	NA	NA	NA	NA
N-nitrosodiphenylamine	NA	NA	NA	NA	NA
henanthrene	0.025U	0.025U	0.025U	0.025U	0.277
yrene	0.025U	0.025U	0.025U	0.025U	0.111
,2,4-Trichlorobenzene	NA	NA	NA	NA	NA
		Priority Pollutant Met			
Antimony	NA	NA	NA	NA 2.25	NA 7.95
arsenic	9.31	3.87	2.49	3.35	47.70
Barium	40.80	60.70	55.90	25.20	47.70 NA
Beryllium	NA 0.500V	NA 0.500V	NA 0.500TI	NA 0.500U	0.500U
Cadmium	0.500U	0.500U	0.500U	10.20	21.70
hromium	19.70 NA	24.20 NA	19.60 NA	10.20 NA	NA
copper	15.40	15.20	15.60	9.53	18.10
ead Jorguni	0.040U	0.040U	0.400U	0.400U	0.040U
Mercury Nickel	0.0400 NA	0.0400 NA	0.4000 NA	NA	NA
elenium	1.00U	1.00U	1.00U	1.00U	1.00U
ilver	0.500U	0.500U	0.500U	0.500U	0.500U
hallium	0.3000 NA	NA NA	0.3000 NA	NA NA	NA NA
inc	NA NA	NA NA	NA NA	NA	NA
otal Cyanide	0.25U	0.25U	0.25U	0.25U	0.25U
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	SPLP Lead and Chrom			
PLP Lead	NA	NA	NA .	NA	NA
PLP Chromium	NA NA	NA NA	NA	NA.	NA
L Chroman	I NA	PCBs (mg/k)		2.72	1
11016	II NA		· · · · · · · · · · · · · · · · · · ·	NA	NA
roclor 1016	NA NA	NA	NA NA		
roclor 1221	NA	NA	NA	NA	NA NA
roclor 1232	NA	NA	NA	NA	NA
roclor 1242	NA	NA	NA	NA	NA
roclor 1248	NA	NA	NA	NA	NA
roclor 1254	NA	NA	NA	NA	NA
roclor 1260	NA	NA	NA	NA	NA

	RPM-SB60-002	RPM-SB76-001	RPM-SB76-002	d surface)/Concentrati RPM-SB77-001	RPM-SB77-002
	7-9'	3-5'	6-8'	3-4'	8-10'
Compound/Analyte	WT ~ NE	WT ~ NE	WT ~ NE	WT ~ 8'	WT ~ 8'
Compound/Analyte	WI~NE	TCL VOCs (mg			
cetone	NA	0.08	0.025U	0.025U	0.025U
Senzene	0.002U	0.005U	0.005U	0.005U	0.005U
Bromodichloromethane	NA	0.005U	0.005U	0.005U	0.005U
Bromoform	NA	0.005U	0.005U	0.005U	0.005U 0.010U
Bromomethane	NA	0.010U 0.024	0.010U 0.010U	0.010U 0.010U	0.010U
-Butanone Carbon Disulfide	NA NA	0.024 0.005U	0.005U	0.005U	0.005U
Carbon Distintee	NA NA	0.005U	0.005U	0.005U	0.005U
Chlorobenzene	NA NA	0.005U	0.005U	0.005U	0.005U
Chlorodibromomethane	NA	0.005U	0.005U	0.005U	0.005U
Chloroethane	NA	0.010U	0.010U	0.010U	0.010U
Chloroform	NA	0.005U	0.005U	0.005U	0.005U 0.010U
Chloromethane	NA NA	0.010U 0.005U	0.010U 0.005U	0.010U 0.005U	0.010U
,1-Dichloroethane	NA NA	0.005U	0.005U	0.005U	0.005U
,2-Dichloroethane ,1-Dichloroethene	NA NA	0.005U	0.005U	0.005U	0.005U
is-1,2-Dichloroethene	NA NA	0.005U	0.005U	0.005U	0.005U
rans-1,2-Dichloroethene	NA NA	0.005U	0.005U	0.005U	0.005U
,2-Dichloropropane	NA	0.005U	0.005U	0.005U	0.005U
is-1,3-Dichloropropene	NA	0.005U	0.005U	0.005U	0.005U
rans-1,3-Dichloropropene	NA	0.005U	0.005U	0.005U 0.005U	0.005U 0.005U
EthylBenzene	0.005U	0.005U 0.010U	0.005U 0.010U	0.010U	0.010U
-hexanone	NA NA	0.010U	0.010U	0.010U	0.010U
-methyl-2-pentanone Methylene Chloride	NA NA	0.010U	0.010U	0.010U	0.010U
styrene	0.005U	0.005U	0.005U	0.005U	0.005U
,1,2,2-Tetrachloroethane	NA	0.005U	0.005U	0.005U	0.005U
etrachloroethene	NA	0.005U	0.005U	0.005U	0.005U
oluene	0.005U	0.005U	0.005U	0.005U 0.005U	0.005U 0.005U
,1,1-Trichloroethane	NA NA	0.005U 0.005U	0.005U 0.005U	0.005U	0.005U
,1,2-Trichloroethane	NA NA	0.005U	0.005U	0.005U	0.005U
Vinyl Acetate	NA NA	0.010U	0.010U	0.010U	0.010U
Vinyl Chloride	NA	0.010U	0.010U	0.010U	0.010U
(ylenes (total)	0.005U	0.005U	0.005U	0.005U	0.005U
		TCL SVOCs (m		N/A	l NA
-Chloro-3-methylphenol	NA NA	NA NA	NA NA	NA NA	NA NA
-Chlorophenol 2.4-Dimethylphenol	NA NA	NA NA	NA NA	NA NA	NA NA
,4-Dinitrophenol	NA NA	NA NA	NA NA	NA	NA
,6-Dinitro-2-Methylphenol	NA	NA	NA	NA	NA
-Methylphenol	NA	NA	NA	NA	'NA
&4-Methylphenol	NA	NA	NA	NA	NA
-Nitrophenol	NA NA	NA NA	NA NA	NA NA	NA NA
-Nitrophenol	NA NA	NA NA	NA NA	NA NA	NA NA
Pentachlorophenol	NA NA	NA NA	NA NA	NA NA	NA NA
2,4,5-Trichlorophenol	NA NA	NA NA	NA	NA	NA
,4,6-Trichlorophenol	NA	NA	NA	NA	NA
Acenaphthene	0.025U	0.025U	0.025U	0.025U	0.025U
cenaphthylene	0.025U	0.0250	0.025U	0.025U	0.025U 0.025U
Inthracene	0.025U	0.025U 0.025U	0.025U 0.025U	0.025U 0.025	0.025U 0.025U
Benzo[a]anthracene	0.025U 0.025U	0.025U 0.025U	0.025U	0.023	0.025U
Benzo[b]fluoranthene Benzo[k]fluoranthene	0.025U	0.025U	0.025U	0.025U	0.025U
Benzo[g,h,i]perylene	0.025U	0.025U	0.025U	0.025U	0.025U
Benzo[a]pyrene	0.025U	0.025U	0.025U	0.025U	0.025U
Butylbenzylphalate	NA	NA	NA	NA	NA
is(2-chloroethoxy)methane	NA	NA	NA	NA	NA
is(2-chloroethyl) ether	NA	NA	NA	NA NA	NA NA
Bis(2-chloroisopropyl) ether	NA NA	NA NA	NA NA	NA NA	NA NA
Bis(2-ethylhexyl)phyhalate	NA NA	NA NA	NA NA	NA NA	NA NA
-bromaphenylphenylether Carbazole	NA NA	NA NA	NA NA	NA NA	NA NA

NOTES:
(1) U - Indicates compound/analyte was analyzed for but not detected, the associated value is the sample reporting limit.
(2) J - Indicates an estimated value.
(3) NA - Not Analyzed.
(4) WT ~ NE - Water table not encountered.
(5) WT ~ n' - Water table approximately n feet below ground surface.

			RPM-SB76-002	d surface)/Concentrati	RPM-SB77-00
	RPM-SB60-002 7-9'	RPM-SB76-001 3-5'	6-8'	3-4	8-10'
Compound/Analyte	WT ~ NE	WT ~ NE	WT ~ NE	WT ~ 8'	WT ~ 8'
Compound/Analyte		TCL SVOCs - Continu		<u> </u>	
Chloronaphthalene	NA	NA NA	NA NA	NA	NA
Chlorophenyl-phenylether	NA NA	NA	NA	NA	NA
Chloroaniline	NA	NA	NA	NA	NA
hrysene	0.025U	0.025U	0.025U	0.030	0.025U
ibenz[a,h]anthracene	0.025U	0.025U	0.025U	0.025U	0.025U
ibenzofuran	NA	NA	NA	NA	NA
i-n-butylphthalate	NA	NA	NA	NA	NA
2-Dichlorobenzene	NA	NA	NA	NA	NA
3-Dichlorobenzene	NA	NA	NA	NA	NA
4-Dichlorobenzene	NA	NA	NA	NA	NA NA
3-Dichlorobenzidine	NA	NA NA	NA NA	NA NA	NA NA
4-Dichlorophenol	NA NA	NA NA	NA NA	NA NA	NA NA
iethylphthalate	NA NA	NA NA	NA NA	NA NA	NA NA
imethylphtalate 4-Dinitrotoluene	NA NA	NA NA	NA NA	NA NA	NA
6-Dinitrotoluene	NA NA	NA NA	NA	NA	NA
i-n-octylphthalate	NA NA	NA	NA	NA	NA
uoranthene	0.025U	0.025U	0.025U	0.046	0.025U
luorene	0.025U	0.025U	0.025U	0.025U	0.025U
exachlorobenzene	NA	NA	NA	NA	NA
exachlorobutadiene	NA	NA	NA	NA	NA
exachlorocyclopentadiene	NA	NA	NA	NA	NA
exachloroethane	NA	NA	NA 0.0251	NA 0.005FI	NA 0.025U
deno[1,2,3-cd]pyrene	0.025U	0.025U	0.025U	0.025U	0.025U
ophorone	NA NA	NA	NA NA	NA NA	NA NA
Methylnaphthalene	NA 0.00577	NA 0.025U	NA 0.025U	NA 0.025U	0.025U
aphthalene	0.025U	0.025U NA	0.025U . NA	0.0230 NA	NA
-Nitroaniline -Nitroaniline	NA NA	NA NA	NA NA	NA NA	NA NA
Nitroaniline	NA NA	NA NA	NA NA	NA	NA
itrobenzene	NA NA	NA	NA	NA	NA
-nitrosodi-n-propylamine	NA	NA	NA	NA	NA
-nitrosodimethylamine	NA	NA	NA	NA	NA
-nitrosodiphenylamine	NA	NA	NA NA	NA	NA
henanthrene	0.025U	0.025U	0.025U	0.025U	0.025U
yrene	0.025U	0.025U	0.025U	0.044	0.025U
,2,4-Trichlorobenzene	NA	NA	NA	NA	NA
		Priority Pollutant Met			NIA
ntimony	NA Tag	NA (60	NA 2.46	NA 5.45	NA 9.81
rsenic	5.23	6.69 74.70	3.46 54.80	16.30	56.90
arium	48.70 NA	74.70 NA	NA	NA NA	NA
eryllium admium	0.500U	0.500U	0.500U	0.500U	0.500U
hromium	21.30	19.70	21.30	6.54	21.90
оррег	NA NA	NA	NA NA	NA NA	NA
ead	13.10	30.40	12.00	237.00	14.10
lercury	0.040U	0.040U	0.040U	0.53	0.040U
ickel	NA	NA	NA	NA	NA
elenium	1.00U	1.00U	1.00U	1.00U	1.00U
lver	0.500U	0.500U	0.500U	0.500U	0.500ป
hallium	NA	NA	NA	NA	NA
nc	NA	NA	NA	NA	NA
otal Cyanide	0.25U	0.30	0.25U	0.25U	0.25U
		SPLP Lead and Chron			
LP Lead	NA	NA NA	NA	NA	NA
PLP Chromium	NA	NA	NA	NA	NA
		PCBs (mg/k	g)		
roclor 1016	NA	NA	NA	U080.0	U080.0
roclor 1221	NA	NA	NA	0.080U	U080U
	NA	NA	NA	0.080U	0.080U
				-	
roclor 1232		NA	NA	0.080U	0.080U
roclor 1232 roclor 1242	NA	NA NA	NA NA		
		NA NA NA	NA NA NA	0.080U 0.080U 0.160U	0.080U 0.080U 0.160U

		mple Location and De	pth (feet below groun	d surface)/Concentrati	on
	RPM-SB78-001	RPM-SB78-002	RPM-SB79-001	RPM-SB79-002	RPM-SB80-001
	3-5'	6-8'	2-4'	6-8'	2-4'
Compound/Analyte	WT ~ NE	WT ~ NE	WT ~ 4'	WT ~ 4'	WT ~ 5'
	M	TCL VOCs (mg	z/kg)		
Acetone	0.025U	0.025U	0.025U	0.21	0.025U
Benzene	0.005U	0.005U	0.005U	0.005U	0.005U
Bromodichloromethane	0.005U	0.005U	0.005U	0.005U	0.005U
Bromoform	0.005U	0.005Ü	0.005U	0.005U	0.005U
Bromomethane	0.010U	0.010U	0.010U	0.010U 0.010U	0.010U 0.010U
2-Butanone	0.010U	0.010U	0.010U 0.005U	0.0100	0.005U
Carbon Disulfide	0.005U 0.005U	0.005U 0.005U	0.005U	0.005U	0.005U
Carbon Tetrachloride Chlorobenzene	0.005U	0.005U	0.005U	0.005U	0.005U
Chlorodibromomethane	0.005U	0.005U	0.005U	0.005Ü	0.005U
Chloroethane	0.010U	0.010U	0.010U	0.010U	0.010U
Chloroform	0.005U	0.005U	0.005U	0.005U	0.005U
Chloromethane	0.010U	0.010U	0.010U	0.010U	0.010U
1.1-Dichloroethane	0.005U	0.005U	0.005U	0.005U	0.005U
1,2-Dichloroethane	0.005U	0.005U	0.005U	0.005U	0.005U
1,1-Dichloroethene	0.005U	0.005U	0.005U	0.005U	0.005U
cis-1,2-Dichloroethene	0.005U	0.005U	0.005U	0.005U	0.005U
trans-1,2-Dichloroethene	0.005U	0.005U	0.005U	0.005U	0.005U
1,2-Dichloropropane	0.005U	0.005U	0.005U 0.005U	0.005U 0.005U	0.005U 0.005U
cis-1,3-Dichloropropene	0.005U 0.005U	0.005U 0.005U	0.005U	0.005U	0.005U
trans-1,3-Dichloropropene	0.005U	0.005U	0.005U	0.005U	0.005U
EthylBenzene 2-hexanone	0.003U	0.003U	0.010U	0.010U	0.010U
4-methyl-2-pentanone	0.010U	0.010U	0.010U	0.010U	0.010U
Methylene Chloride	0.010U	0.010U	0.010U	0.010U	0.010U
Styrene	0.005U	0.005U	0.005U	0.005U	0.005U
1,1,2,2-Tetrachloroethane	0.005U	0.005U	0.005U	0.005U	0.005U
Tetrachloroethene	0.005U	0.005U	0.005U	0.005U	0.005U
Toluene	0.005U	0.005U	0.005U	0.005U	0.005U
1,1,1-Trichloroethane	0.005U	0.005U	0.005U	0.005U	0.005U
1,1,2-Trichloroethane	0.005U	0.005U	0.005U	0.005U	0.005U
Trichloroethene	0.005U	0.005U	0.005U 0.010U	0.005U 0.010U	0.005U 0.010U
Vinyl Acetate	0.010U	0.010U 0.010U	0.010U	0.010U	0.010U
Vinyl Chloride	0.010U 0.005U	0.010U	0.005U	0.005U	0.005U
Xylenes (total)	0.0030	TCL SVOCs (m		0.0000	0.0050
4-Chloro-3-methylphenol	NA NA	NA NA	NA NA	NA	NA
2-Chlorophenol	NA	NA	NA	NA	NA
2.4-Dimethylphenol	NA	NA	NA	NA	NA
2,4-Dinitrophenol	NA	NA	NA	NA	NA
4,6-Dinitro-2-Methylphenol	NA	NA	NA	NA	NA
2-Methylphenol	NA	NA	NA	NA	NA
3&4-Methylphenol	NA	NA_	NA NA	NA NA	NA NA
2-Nitrophenol	NA NA	NA NA	NA NA	NA NA	NA NA
4-Nitrophenol	NA NA	NA NA	NA NA	NA NA	NA NA
Pentachlorophenol	NA NA	NA NA	NA NA	NA NA	NA NA
Phenol 2,4,5-Trichlorophenol	NA NA	NA NA	NA NA	NA NA	NA NA
2,4,6-Trichlorophenol	NA NA	NA NA	NA NA	NA	NA
Acenaphthene	0.025U	0.025U	0.071	0.025U	0.036
Acenaphthylene	0.059	0.025U	0.025U	0.050	0.025U
Anthracene	0.025U	0.025U	0.077	0.051	0.114
Benzo[a]anthracene	0.097	0.025U	0.134	0.087	0.299
Benzo[b]fluoranthene	0.080	0.025U	0.077	0.092	0.155
Benzo[k]fluoranthene	0.072	0.025U	0.108	0.072	0.208
Benzo[g,h,i]perylene	0.066	0.025U	0.099	0.060	0.169
Benzo[a]pyrene	0.093	0.025U	0.115	0.097	0.275 NA
Butylbenzylphalate	NA NA	NA NA	NA NA	NA NA	NA NA
ois(2-chloroethoxy)methane	NA NA	NA NA	NA NA	NA NA	NA NA
bis(2-chloroethyl) ether	NA NA	NA NA	NA NA	NA NA	NA NA
Bis(2-chloroisopropyl) ether	NA NA	NA NA	NA NA	NA NA	NA NA
Bis(2-ethylhexyl)phyhalate 4-bromaphenylphenylether	NA NA	NA NA	NA NA	NA NA	NA NA
Carbazole	NA NA	NA NA	NA NA	NA NA	NA NA

				nd surface)/Concentration	n
	RPM-SB78-001	RPM-SB78-002	RPM-SB79-001	RPM-SB79-002	RPM-SB80-00
	3-5'	6-8	2-4'	6-8'	2-4'
Compound/Analyte	WT ~ NE	WT ~ NE	WT ~ 4'	WT ~ 4'	WT ~ 5'
		TCL SVOCs - Continu	ed (mg/kg)		
-Chloronaphthalene	NA	NA	NA	NA	NA
-Chlorophenyl-phenylether	NA	NA	NA	NA	NA
-Chloroaniline	NA	NA	NA	NA	NA
hrysene	0.110	0.029	0.149	0.093	0.308
ibenz[a,h]anthracene	0.025U	0.025U	0.045	0.031	0.089
ibenzofuran	NA	NA	NA	NA NA	NA
i-n-butylphthalate	NA	NA	NA	NA	NA
2-Dichlorobenzene	NA	NA	NA	NA	NA
3-Dichlorobenzene	NA	NA	NA NA	NA NA	NA NA
4-Dichlorobenzene	NA	NA	NA	NA NA	NA NA
3-Dichlorobenzidine	NA	NA	NA NA	NA NA	
4-Dichlorophenol	NA	NA	NA	NA NA	NA
iethylphthalate	NA	NA	NA	NA NA	NA
imethylphtalate	NA	NA	NA	NA NA	NA
4-Dinitrotoluene	NA	NA	NA	NA NA	NA NA
6-Dinitrotoluene	NA NA	NA NA	NA NA	NA NA	NA NA
-n-octylphthalate	NA	NA 0.052	NA 0.371	NA 0.00°	
uoranthene	0.087	0.052	0.271	0.098	0.750
uorene	0.025U	0.025U	0.036	0.025U	0.039
exachlorobenzene	NA	NA	NA	NA NA	NA NA
exachlorobutadiene	NA	NA	NA	NA NA	NA
exachlorocyclopentadiene	NA	NA	NA	NA NA	NA
exachloroethane	NA	NA	NA 0.000	NA NA	NA 0.166
deno[1,2,3-cd]pyrene	0.056	0.025U	0.088	0.054	0.166
ophorone	NA	NA	NA	NA NA	NA
Methylnaphthalene	NA	NA	NA	NA O O O O O O O O O O O O O O O O O O O	NA 0.025U
aphthalene	0.025U	0.025U	0.025U	0.025U	0.025U
-Nitroaniline	NA	NA	NA	NA NA	NA_
Nitroaniline	NA	NA	NA	NA NA	NA
-Nitroaniline	NA	NA	NA	NA NA	NA
itrobenzene	NA	NA	NA	NA NA	NA NA
-nitrosodi-n-propylamine	NA	NA	NA NA	NA NA	NA NA
-nitrosodimethylamine	NA NA	NA_	NA	NA NA	NA NA
-nitrosodiphenylamine	NA NA	NA 0.026	NA 0.124	0.046	0.360
henanthrene	0.032	0.026	0.124	0.101	0.569
yrene	0.117	0.043	0.230	NA NA	NA
2,4-Trichlorobenzene	NA	NA NA	NA	I NA	IVA
	II >7.4	Priority Pollutant Meta		NA I	NA
ntimony	NA 2.47	NA 12.80	NA 6.19	6.28	4.34
rsenic	2.47	47.10	19.70	78.80	28.80
arium	61.00		NA	NA NA	NA NA
eryllium	0.500U	NA 0.500U	0.500U	0.500U	0.500U
admium	20.40	21.90	26.00	21.80	9.25
hromium	20.40 NA	21.90 NA	NA	NA NA	NA NA
opper	19.00	17.70	26.40	65.70	47.20
ead	0.040U	0.040U	0.040U	0.040U	0.228
ercury	0.040U NA	0.0400 NA	NA	0.0400 NA	NA
ickel	1.00U	1.00U	1.00U	1.00U	1.00U
elenium	0.500U	0.500U	0.500U	0.500U	0.500U
lver	0.5000 NA	0.3000 NA ·	0.3000 NA	NA NA	NA NA
nallium		NA NA	NA NA	NA NA	NA NA
nc	NA 0.25H	0.25U	0.25U	0.25U	0.54
otal Cyanide	0.25U	SPLP Lead and Chrom		0.220	0.57
	· · · · · · · · · · · · · · · · · · ·	1		NA	NA
LP Lead	NA NA	NA	NA		
LP Chromium	NA NA	NA	NA	NA	NA
		PCBs (mg/kg			
roclor 1016	0.080U	0.080U	0.080U	0.080U	0.080U
roclor 1221	0.080U	0.080U	0.080U	0.080U	0.080U
roclor 1232	0.080U	0.080U	0.080U	0.080U	0.080U
		0.080U	0.080U	0.080U	0.080U
roclor 1242	0.080U			0.080U	0.080U
roclor 1248	0.080U	0.080U	0.080U		
roclor 1254	0.160U	0.160U	0.160U	0.160U	0.160U
roclor 1260	0.160U	0.160U	0.160U	0.160U	0.160U

[|] Arcolor 1260 | | 0.1600 | 0.

	RPM-SB81-001 3-4'	RPM-SB81-002 6-8'	RPM-SB82-001 7-8'	RPM-SB83-001 3-4'	RPM-SB83-002 6-8'
Compound/Analyte	WT ~ 4'	WT ~ 4'	WT ~ 7'	WT ~ 9'	WT ~ 9'
	<u> </u>	TCL VOCs (mg			
Acetone	0.13	0.06	0.025U	0.025U	0.025U
Benzene	0.005U	0.005U	0.005U	0.005U	0.005U
Bromodichloromethane	0.005U	0.005U	0.005U	0.005U	0.005U
Bromoform	0.005U	0.005U	0.005U	0.005U 0.010U	0.005U 0.010U
Bromomethane	0.010U 0.020	0.010U 0.010U	0.010U 0.010U	0.010U	0.010U
2-Butanone Carbon Disulfide	0.005U	0.0100 0.005U	0.010U	0.010U	0.005U
Carbon Tetrachloride	0.005U	0.005U	0.005U	0.005U	0.005U
Chlorobenzene	0.005U	0.005U	0.005U	0.005U	0.005U
Chlorodibromomethane	0.005U	0.005U	0.005U	0.005U	0.005U
Chloroethane	0.010U	0.010U	0.010U	0.010U	0.010U
Chloroform	0.005U	0.005U	0.005U	0.005U	0.005Ü
Chloromethane	0.010U	0.010U	0.010U	0.010U	0.010U
1,1-Dichloroethane	0.005U	0.005U	0.005U	0.005U 0.005U	0.005U 0.005U
1,2-Dichloroethane 1,1-Dichloroethene	0.005U 0.005U	0.005U 0.005U	0.005U 0.005U	0.005U	0.005U
cis-1,2-Dichloroethene	0.005U	0.005U	0.005U	0.005U	0.902
trans-1,2-Dichloroethene	0.005U	0.005U	0.005U	0.005U	0.055
1,2-Dichloropropane	0.005U	0.005U	0.005U	0.005U	0.005U
cis-1,3-Dichloropropene	0.005U	0.005U	0.005U	0.005U	0.005U
trans-1,3-Dichloropropene	0.005U	0.005U	0.005U	0.005U	0.005U
EthylBenzene	0.005U	0.005U	0.005U	0.005U	0.005U
2-hexanone	0.010U	0.010U	0.010U	0.010U	0.010U
4-methyl-2-pentanone	0.010U	0.010U 0.010U	0.010U 0.010U	0.010U 0.010U	0.010U 0.010U
Methylene Chloride	0.010U 0.005U	0.010U	0.010U	0.005U	0.005U
Styrene 1,1,2,2-Tetrachloroethane	0.005U	0.005U	0.005U	0.005U	0.005U
Tetrachloroethene	0.005U	0.005U	0.005U	0.005U	0.005U
Toluene	0.005U	0.005U	0.005U	0.005U	0.005U
1,1,1-Trichloroethane	0.005U	0.005U	0.005U	0.005U	0.005U
1,1,2-Trichloroethane	0.005U	0.005U	0.005U	0.005U	0.005U
Trichloroethene	0.005U	0.005U	0.005U	0.005U	3.090
Vinyl Acetate	0.010U	0.010U	0.010U 0.010U	0.010U 0.010U	0.010U 0.010
Vinyl Chloride Xylenes (total)	0.010U 0.005U	0.010U 0.005U	0.010U 0.005U	0.005U	0.005U
Aylenes (total)	0.0050	TCL SVOCs (m		0.0050	0.0000
4-Chloro-3-methylphenol	NA	NA NA	NA NA	NA	NA
2-Chlorophenol	NA	NA	NA	NA	NA
2.4-Dimethylphenol	NA	NA	NA	NA	NA
2,4-Dinitrophenol	NA	NA	NA	NA	NA
4,6-Dinitro-2-Methylphenol	NA	NA	NA NA	NA NA	NA NA
2-Methylphenol	NA NA	NA NA	NA NA	NA NA	NA NA
3&4-Methylphenol 2-Nitrophenol	NA NA	NA NA	NA NA	NA NA	NA NA
2-Nitrophenol 4-Nitrophenol	NA NA	NA NA	NA NA	NA NA	NA NA
Pentachlorophenol	NA NA	NA NA	NA NA	NA NA	NA
Phenol	NA	NA	NA	NA	NA
2,4,5-Trichlorophenol	NA	NA	NA	NA	NA
2,4,6-Trichlorophenol	.NA	NA	NA	NA	NA
Acenaphthene	0.075	0.031	0.025U	0.025U	0.025U
Acenaphthylene	0.025U	0.025U	0.025U 0.025U	0.025U 0.025U	0.025U 0.025U
Anthracene	0.242 0.867	0.116 0.238	0.025U 0.025U	0.0250	0.025U
Benzo[a]anthracene Benzo[b]fluoranthene	0.616	0.238	0.025U	0.029	0.025U
Benzo[k]fluoranthene	0.616	0.130	0.025U	0.027	0.025U
Benzo[g,h,i]perylene	0.305	0.066	0.025U	0.025U	0.025U
Benzo[a]pyrene	0.646	0.166	0.025U	0.028	0.025U
Butylbenzylphalate	NA	NA	NA	NA	NA
ois(2-chloroethoxy)methane	NA	NA	NA	NA	NA
ois(2-chloroethyl) ether	NA	NA	NA	NA NA	NA NA
Bis(2-chloroisopropyl) ether	NA XX	NA NA	NA NA	NA NA	NA NA
Bis(2-ethylhexyl)phyhalate	NA NA	NA NA	NA NA	NA NA	NA NA
4-bromaphenylphenylether Carbazole	NA NA	NA NA	NA NA	NA NA	NA NA

	RPM-SB81-001 3-4'	RPM-SB81-002 6-8'	RPM-SB82-001 7-8'	RPM-SB83-001 3-4'	RPM-SB83-002 6-8'
Compound/Analyte	WT ~ 4'	WT ~ 4'	WT ~ 7'	WT ~ 9'	WT ~ 9'
		TCL SVOCs - Continu			
-Chloronaphthalene	NA	NA	NA	NA	NA
-Chlorophenyl-phenylether	NA	NA	NA	NA	NA
-Chloroaniline	NA	NA NA	NA 0.005V	NA 0.025	NA 0.025U
hrysene	0.895	0.235	0.025U	0.035 0.025U	0.025U 0.025U
ibenz[a,h]anthracene	0.163 NA	0.038 NA	0.025U NA	NA	NA
Dibenzofuran Di-n-butylphthalate	NA NA	NA NA	NA NA	NA NA	NA NA
,2-Dichlorobenzene	NA NA	NA NA	NA NA	NA NA	NA
3-Dichlorobenzene	NA NA	NA	NA	NA	NA
4-Dichlorobenzene	NA	NA	NA	NA	NA
,3-Dichlorobenzidine	NA	NA	NA	NA	NA
,4-Dichlorophenol	NA	NA	NA	NA	NA
Piethylphthalate	NA	NA	NA	NA	NA
imethylphtalate	NA	NA	NA	NA	NA
,4-Dinitrotoluene	NA	NA NA	NA NA	NA	NA
,6-Dinitrotoluene	NA NA	NA NA	NA NA	NA NA	NA NA
i-n-octylphthalate	NA 1800	NA 0.427	NA 0.025U	. NA 0.054	0.025U
luoranthene	1.890 0.087	0.427	0.025U 0.025U	0.034 0.025U	0.025U
luorene Iexachlorobenzene	0.087 NA	0.035 NA	0.025U NA	0.0230 NA	0.0230 NA
lexachlorobenzene lexachlorobutadiene	NA NA	NA NA	NA NA	NA NA	NA NA
lexachlorocyclopentadiene	NA NA	NA NA	NA NA	NA NA	NA
Iexachloroethane	NA NA	NA	NA	NA	NA
ndeno[1,2,3-cd]pyrene	0.333	0.075	0.025U	0.025U	0.025U
sophorone	NA	NA	NA	NA	NA
-Methylnaphthalene	NA	NA	NA	NA	NA
laphthalene	0.025U	0.025U	0.025U	0.025U	0.025U
-Nitroaniline	NA	NA	NA	NA	NA
-Nitroaniline	NA NA	NA	NA	NA NA	NA
-Nitroaniline	NA NA	NA NA	NA NA	NA NA	NA NA
litrobenzene	NA NA	NA NA	NA NA	NA NA	NA NA
I-nitrosodi-n-propylamine I-nitrosodimethylamine	NA NA	NA NA	NA NA	NA NA	NA NA
I-nitrosodinhenylamine	NA NA	NA NA	NA NA	NA NA	NA
henanthrene	0.685	0.289	0.025U	0.025U	0.025U
yrene	1.770	0.405	0.025U	0.047	0.025U
,2,4-Trichlorobenzene	NA	NA	NA	NA	NA
		Priority Pollutant Met	als (mg/kg)		
entimony	NA	NA :	NA	NA	NA
Arsenic	9.92	3.12	8.43	3.89	8.83
arium	31.40	19.50	28.00	68.60	45.90
eryllium	NA 0.500V	NA 0.500U	NA 0.500U	NA 0.500U	NA 0.500U
admium	0.500U	0.500U 7.42	0.500U 12.70	0.500U 21.20	21.20
Chromium	11.80 NA	7.42 NA	NA NA	NA NA	NA
ead	21.40	19.50	15.90	86.50	15.10
fercury	0.473	0.765	0.040U	0.435	0.04U
lickel	NA NA	NA NA	NA	NA	NA
elenium	1.00U	1.00U	1.00U	1.00U	1.00U
ilver	0.500U	0.500U	0.500U	0.500U	0.500U
hallium	NA	NA	NA	NA	NA
inc	NA	NA	NA	NA	NA
otal Cyanide	0.25U	0.25U	0.25U	0.25U	0.25U
	1	SPLP Lead and Chron		1	
PLP Lead	NA	NA	NA	NA	NA
PLP Chromium	NA	NA PCBs (mg/k	NA	NA	NA
roclor 1016	NA	NA NA	NA NA	NA	NA
	NA NA	NA NA	NA NA	NA NA	NA
roclor 1221			NA NA	NA NA	NA NA
roclor 1232	NA NA	NA NA			
roclor 1242	NA NA	NA NA	NA NA	NA NA	NA NA
roclor 1248	NA	NA	NA NA	NA NA	NA
roclor 1254	NA NA	NA	NA	NA	NA
Aroclor 1260	NA	NA NA	NA	NA NA	NA NA

[|] Arcolor 1260 | | NOTES:
(1) U - Indicates compound/analyte was analyzed for but not detected, the associated value is the sample reporting limit.
(2) J - Indicates an estimated value.
(3) NA - Not Analyzed.
(4) WT ~ NE - Water table not encountered
(5) WT ~ n' - Water table approximately n feet below ground surface.

Table 2 Soil Physical Testing Results Rogers Park Main Parcel

	Sample Location and Depth (feet below ground surface)					
	B9	B-11	B-12	B-12		
	4-5'	4-5'	8-10'	15-16'		
Grain Size (% passing #200 sieve)	NA	NA	NA	NA		
pH	7.5	8	9.6	8.4		
Organic Matter	NA	NA	NA	NA		
Moisture Content	NA	NA	NA	NA		

	Sample Location and Depth (feet below ground surface)					
	B-15	B-15	B-17	B-17 DUP		
	7-8'	11-12'	7-8'	7-8'		
Grain Size (% passing #200 sieve)	NA	NA	NA	NA		
pH T	7.9	7.9	7.8	7.7		
Organic Matter	NA	NA	N/A	NA		
Moisture Content	NA	NA	NA	NA		

	Sample Location and Depth (feet below ground surface)					
	B-19 2-4'	RPM-SB30H-001 8'				
Grain Size (% passing #200 sieve)	NA	NA				
рН	8	9.48				
Organic Matter	NA	1.32%				
Moisture Content	NA	7.81%				

	Sample Location and Depth (feet below ground surface)			
	RPM -SB39-004	339-004		
	7-8'			
Moisture Content	26.7%			
Wet Soil Density (g/cm ³)	2.24			
Dry Soil Density (g/cm³)	1.77			
Hydraulic Conductivity (cm/sec)	3.00E-09			

NA - Not Analyzed Grain Size - ASTM D-422 Wet/Dry Soil Density - ASTM D2937 Hydraulic Conductivity - ASTM D5084 pH - Method 9045C Organic Matter - ASTM 2974-87C Moisture Content - ASTM-2216 g/cm3 - grams per centimeter cubed cm/sec - centimeters per second

	Sample Location and Depth (feet below ground surface)/Concentration B-6 B-7 B-7 B-8 B-9						
	B-6	B-7	B-7	B-8			
	6-8'	10-12'	14-15'	2-4	4-5'		
Compound/Analyte	WT ~ 6'	WT ~ 8'	WT ~ 8'	WT ~ NE	WT ~ NE		
		TCL VOCs (mg/k		0.025 UJ	0.025 U		
Acetone	0.025 UJ	0.025 UJ	0.025 U 0.005 U	0.023 U3	0.025 U		
Benzene	0.015 J 0.005 UJ	0.005 UJ 0.005 UJ	0.005 U	0.005 U	0.005 U		
Bromodichloromethane	0.005 UJ	0.005 UJ	0.005 U	0.005 U	0.005 U		
Bromoform Bromomethane	0.01 UJ	0.01 UJ	0.01 U	0.01 U	0.01 U		
-Butanone	0.01 UJ	0.01 UJ	0.01 U	0.01 U	0.01 U		
Carbon Disulfide	0.005 UJ	0.01 J	0.005 U	0.005 U	0.005 U		
arbon Tetrachloride	0.005 UJ	0.005 UJ	0.005 U	0.005 U	0.005 U		
Chlorobenzene	0.005	0.005 UJ	0.005 U	0.005 U	0.005 U		
Dibromochloromethane	0.005 UJ	0.005 UJ	0.005 U	0.005 U	0.005 U		
Chloroethane	0.01 UJ	0.01 UJ	0.01 U	0.01 U	0.01 U		
Chloroform	0.005 UJ	0.005 UJ	0.005 U	0.005 U	0.005 U 0.01 U		
Chloromethane	0.01 UJ	0.01 UJ	0.01 U	0.01 U 0.005 U	0.01 U		
,1-Dichloroethane	0.005 UJ	0.005 UI	0.005 U	0.005 U	0.005 U		
,2-Dichloroethane	0.005 UJ 0.005 UJ	0.005 UJ 0.007 J	0.005 U 0.005 U	0.005 U	0.005 U		
,1-Dichloroethene	0.005 UJ	0.066 J	0.063	0.005 U	0.005 U		
rans-1,2-dichloroethene	0.005 UJ	0.008 J	0.005 U	0.005 U	0.005 U		
.2 Dichloropropane	0.005 UJ	0.005 UJ	0.005 U	0.005 U	0.005 U		
ris-1,3-dichloropropene	0.005 UJ	0.005 UJ	0.005 U	0.005 U	0.005 U		
rans-1,3-dichloropropene	0.005 UJ	0.005 UJ	0.005 U	0.005 U	0.005 U		
Ethylbenzene	0.005 UJ	0.005 UJ	0.005 U	0.005 U	0.005 U		
2-hexanone	0.01 UJ	0.01 UJ	0.01 U	0.01 U	0.01 U		
-methyl-2-pentanone	0.01 UJ	0.01 UJ	0.01 U	0.01 U	0.01 U		
Methylene Chloride	0.01 UJ	0.01 UJ	0.01 U	0.01 U	0.01 U		
Styrene	0.005 UJ	0.005 UJ	0.005 U	0.005 U 0.005 U	0.005 U 0.005 U		
,1,2,2-Tetrachloroethane	0.005 UJ	0.005 UJ	0.005 U	0.005 U	0.005 U		
l'etrachloroethene	0.005 UJ 0.005 UJ	0.064 J 0.005 UJ	0.005 U 0.005 U	0.005 UJ	0.005 U		
Foluene	0.005 UJ	0.005 UJ	0.005 U	0.005 U	0.005 U		
1,1,2-Trichloroethene	0.005 UJ	0.005 UJ	0.005 U	0.005 U	0.005 U		
Frichloroethene	0.005 UJ	77.5 J	15.8	0.005 UJ	0.005 U		
Vinyl Acetate	0.01 UJ	0.01 UJ	0.01 U	0.01 U	0.01 U		
Vinyl Chloride	0.01 UJ	0.01 UJ	0.01 U	0.01 U	0.01 U		
Kylenes	0.005 UJ	0.005 UJ	0.005 U	0.005 U	0.005 U		
		TCL SVOCs (mg/					
4-Chloro-3-methylphenol	0.330 UJ	0.330 U	NA	0.330 U	0.330 U		
2-Chlorophenol	0.330 UJ	0.330 U	NA NA	0.330 UJ	0.330 U 0.330 U		
2,4-Dimethylphenol	0.330 UJ	0.330 U	NA NA	0.330 U 1.600 U	1.600 U		
2,4-Dinitrophenol	1.600 UJ 1.600 UJ	1.600 U 1.600 U	NA NA	1.600 U	1.600 UJ		
4,6-Dinitro-2-Methylphenol	0.330 UJ	0.330 U	NA NA	0.330 UJ	0.330 U		
2-Methylphenol 3&4-Methylphenol	0.330 UJ	0.330 U	NA NA	0.330 U	0.330 U		
2-Nitrophenol	1.600 UJ	1.600 U	NA	1.600 U	1.600 U		
I-Nitrophenol	1.600 UJ	1.600 U	NA	1.600 U	1.600 U		
Pentachlorophenol	1.600 UJ	1.600 U	NA	1.600 U	1.600 U		
Phenol	0.330 UJ	0.330 U	NA	0.330 U	0.330 U		
2,4,5-Trichlorophenol	0.660 UJ	0.660 U	NA	0.660 U	0.660 U		
2,4,6-Trichlorophenol	0.330 UJ	0.330 U	NA NA	0.330 U	0.330 U		
Acenaphthene	0.33 UJ	0.33 UJ	NA NA	0.33 UJ	0.33 UJ 0.33 U		
Acenaphthylene	0.33 UJ	0.33 U	NA NA	0.33 U 0.33 U	0.33 U		
Anthracene	0.33 UJ	0.33 U	NA NA	0.33 U	0.33 U		
Benzo(a)anthracene	0.33 UJ 0.33 UJ	0.33 U 0.33 U	NA NA	0.33 U	0.33 U		
Benzo(b)fluoranthene Benzo(k)fluoranthene	0.33 UJ	0.33 U	NA NA	0.33 U	0.33 U		
Benzo(k)fluorantnene Benzo(g,h,l)perylene	0.33 UJ	0.33 U	NA NA	0.33 U	0.33 U		
Benzo(g,n,r)perylene Benzo(a)pyrene	0.33 UJ	0.33 U	NA NA	0.33 U	0.33 U		
Butylbenzylphthalate	0.33 UJ	0.33 U	NA	0.33 U	0.33 U		
ois(2-chloroethoxy)methane	0.33 UJ	0.33 U	NA	0.33 U	0.33 U		
bis(2-chloroethyl) ether	0.33 UJ	0.33 U	NA	0.33 U	0.33 U		
Bis(2-chloroisopropyl)ether	0.33 UJ	0.33 U	NA	0.33 U	0.33 U		
Bis(2-ethylhexyl)phthalate	0.33 UJ	0.33 U	NA	0.33 U	0.33 U		
4-bromophenylphenylether	0.33 UJ	0.33 U	NA	0.33 U	0.33 U		

NOTES:

- NOTES:

 (1) U Indicates compound/analyte was analyzed for but not detected, the associated value is the sample reporting limit

 (2) J Indicates an estimated value

 (3) NA Not Analyzed

 (4) WT NE Water table not encountered.

 (5) WI n' Water table approximately n feet below ground surface.

	Sample Location and Depth (feet below ground surface)/Concentration					
	B-6	B-7	B-7	B-8	B-9	
	6-8'	10-12	14-15'	2-4'	4-5'	
Compound/Analyte	WT ~ 6'	WT ~ 8'	WT ~ 8'	WT ~ NE	NA	
	TC	L SVOCs - Continued	(mg/kg)			
2-Chloronaphthalene	0.33 UJ	0.33 U	NA	0.33 U	0.33 U	
1-Chlorophenyl-phenylether	0.33 UJ	0.33 U	NA	0.33 U	0.33 U	
I-Chloroaniline	0.33 UJ	0.33 U	NA	0.33 U	0.33 U	
Chrysene	0.33 UJ	0.33 U	NA	0.33 U	0.33 U	
Dibenzo(a,h)anthracene	0.33 UJ	0.33 U	NA	0.33 U	0.33 U	
Dibenzofuran	0.33 UJ	0.33 U	NA	0.33 U	0.33 U	
Di-n-butylphthalate	0.33 UJ	0.33 U	NA	0.33 U	0.33 U	
1,2-Dichlorobenzene	0.33 UJ	0.33 U	NA	0.33 U	0.33 U	
,3-Dichlorobenzene	0.33 UJ	0.33 U	NA	0.33 U	0.33 U	
,4-Dichlorobenzene	0.33 UJ	0.33 UJ	NA	0.33 UJ	0.33 UJ	
3,3-Dichlorobenzidine	0.66 UJ	0.66 U	NA	0.66 U	0.66 U	
2,4-Dichlorophenol	0.33 UJ	0.33 U	NA	0.33 U	0.33 U	
Diethylphthalate	0.33 UJ	0.33 U	NA	0.33 U	0.33 U	
Dimethylphthalate	0.33 UJ	0.33 U	NA	0.33 U	0.33 U	
2,4-Dinitrotoluene	0.33 UJ	0.33 U	NA	0.33 U	0.33 U	
2,6-Dinitrotoluene	0.33 UJ	0.33 U	NA	0.33 U	0.33 U	
Di-n-octylphthalate	0.33 UJ	0.33 U	NA	0.33 U	0.33 U	
Fluoranthene	0.33 UJ	0.33 U	NA	0.33 U	0.33 U	
luorene	0.33 UJ	0.33 U	NA	0.33 U	0.33 U	
Hexachlorobenzene	0.33 UJ	0.33 U	NA	0.33 U	0.33 U	
Hexachlorobutadiene	0.33 UJ	0.33 U	NA	0.33 U	0.33 U	
Hexachlorocyclopentadiene	0.33 UJ	0.33 U	NA	0.33 UJ	0.33 U	
Hexachloroethane	0.33 UJ	0.33 U	NA	0.33 U	0.33 U	
ndeno(1,2,3-cd)pyrene	0.33 UJ	0.33 U	NA	0.33 U	0.33 U	
sophorone	0.33 UJ	0.33 U	NA	0.33 U	0.33 U	
2-Methylnaphthalene	0.33 UJ	0.33 U	NA	0.33 U	0.33 U	
Naphthalene	0.33 UJ	0.33 U	NA	0.33 U	0.33 U	
2-Nitroaniline	1.60 UJ	1.60 U	NA	1.60 U	1.60 U	
3-Nitroaniline	1.60 UJ	1.60 U	NA	1.60 U	1.60 U	
I-Nitroaniline	1.60 UJ	1.60 U	NA	1.60 U	1.60 U	
Vitrobenzene	0.33 UJ	0.33 U	NA NA	0.33 U	0.33 U 0.33 U	
N-nitrosodi-n-propylamine	0.33 UJ	0.33 UJ	NA NA	0.33 UJ	0.33 U	
N-Nitrosodimethylamine	0.33 UJ	0.33 U	NA NA	0.33 U 0.33 U	0.33 U	
N-nitrosodiphenylamine	0.33 UJ	0.33 U		0.33 U	0.33 U	
Phenanthrene	0.33 UJ	0.33 U 0.33 U	NA NA	0.33 U	0.33 U	
Pyrene	0.33 UJ	0.33 UJ	NA NA	0.33 UJ	0.33 UJ	
,2,4-Trichlorobenzene	0.33 UJ	<u> </u>		0.55 03	1 0.55 05	
		ority Pollutant Metals		2 U	2.2 U	
Antimony	1.9 U	2.1 U	NA NA			
Arsenic	8.2	6.4	NA NA	8.3	5.8	
Barium	27.2	44.9	NA NA	49.6	34.4	
Beryllium	0.49	0.72	NA NA	0.66	0.65	
Cadmium	0.37	0.31	NA NA	0.2 U 22	0.22 U 19.1	
Chromium	14.2	21.1		22	33.1	
Copper	34.4	26.7	NA NA	12.3	15.5	
ead	13.3	12	NA NA	0.04 U	0.04 U	
Mercury	0.04 U	0.04	NA NA	26.7	29.6	
Nickel	27.2	30.3 0.52 U	NA NA	0.51	0.54 U	
Selenium	0.47 U	0.52 U	NA NA	0.51 0.51 U	0.54 U	
Silver	0.47 U		NA NA	0.51 U	1.1 U	
Challium	0.94 U	1 U 42.2	NA NA	41.7	42.5	
Zinc	43.2	42.2 NA	NA NA	NA NA	42.5 NA	
Total Cyanide	NA			INA	INA	
		LP Lead and Chromiu		T	T 0.0055.55	
SPLP Lead	0.0075 U	0.0075 U	NA NA	0.0075 U	0.0075 U	
SPLP Chromium	0.05 U	0.05 U	NA	0.05 U	0.05 U	

- NOTES:

 (1) U Indicates compound/analyte was analyzed for but not detected, the associated value is the sample reporting limit.

 (2) J Indicates an estimated value.

 (3) NA Not Analyzed.

 (4) WT NE Water table not encountered.

 (5) WI n' Water table approximately n feet below ground surface.

September 2001

		nd surface)/Concentra			
	B-10	B-11	B-12	B-12 15-16	B-15 7-8'
	6-8' WT ~ NE	4-5' WT ~ NE	8-10' WT ~ 8	15-16 WT ~ 8'	7-8 WT ~ NE
Compound/Analyte	WI~NE	TCL VOCs (mg/l		1 1120	1 11-14B
	0.1 J	0.025 U	(g) 0.025 U	0.025 UJ	0.025 UJ
Acetone	0.010 J	0.025 U	0.025 0	0.025 UJ	2.55 J
Bromodichloromethane	0.005 UJ	0.005 U	0.005 U	0.005 UJ	0.005 UJ
Bromoform	0.005 UJ	0.005 U	0.005 U	0.005 UJ	0.005 UJ
Bromomethane	0.01 UJ	0.01 U	0.01 U	0.01 UJ	0.01 UJ
-Butanone	0.01 UJ	0.01 U	0.01 U	0.01 UJ	0.01 UJ
Carbon Disulfide	0.006 J	0.005 U	0.033	0.005 UJ	0.028 J
Carbon Tetrachloride	0.005 UJ	0.005 U	0.005 U	0.005 UJ	0.005 UJ
Chlorobenzene	0.005 UJ	0.005 U	0.005 U	0.005 UJ	0.005 UJ
Dibromochloromethane	0.005 UJ	0.005 U	0.005 U	0.005 UJ	0.01 U
Chloroethane	0.061 J	0.01 U	0.01 U	0.01 UJ	0.005 UJ
Chloroform	0.005 UJ	0.005 U	0.005 U	0.005 UJ	0.01 UJ
Chloromethane	0.01 UJ	0.01 U	0.01 U	0.01 UJ	0.005 UJ
,1-Dichloroethane	0.064 J	0.005 U	0.005 U	0.005 UJ	0.005 UJ
,2-Dichloroethane	0.005 UJ	0.005 U	0.005 U	0.005 UJ	0.005 UJ
,1-Dichloroethene	0.005 UJ	0.005 U	0.005 U	0.005 UJ	0.005 UJ
is-1,2-dichloroethene	0.005 UJ	0.005 U	0.005 U	0.005 UJ	0.005 UJ
rans-1,2-dichloroethene	0.005 UJ	0.005 U	0.005 U	0.005 UJ	0.005 UJ
,2 Dichloropropane	0.005 UJ	0.005 U	0.005 U	0.005 UJ	0.005 UJ
is-1,3-dichloropropene	0.005 UJ	0.005 U	0.005 U	0.005 UJ	0.005 UJ
rans-1,3-dichloropropene	0.005 UJ	0.005 U	0.005 U	0.005 UJ	0.005 UJ
Ethylbenzene	0.005 UJ	0.005 U	0.006	0.005 UJ	0.006 J
-hexanone	0.01 UJ	0.01 U	0.01 U	0.01 UJ 0.01 UJ	0.01 UJ 0.01 UJ
-methyl-2-pentanone	0.01 UJ	0.01 U	0.01 U 0.01 U	0.01 UJ	0.01 UJ
Methylene Chloride	0.01 UJ 0.005 U	0.01 U 0.005 U	0.005 U	0.005 UJ	1.78 J
Styrene	0.005 UJ	0.005 U	0.005 U	0.005 UJ	0.005 UJ
,1,2,2-Tetrachloroethane	0.005 UJ	0.005 U	0.005 U	0.005 UJ	0.005 UJ
Coluene	0.005 J	0.005 U	0.005 U	0.005 UJ	0.005 UJ
,1,1-Trichloroethane	0.005 UJ	0.005 U	0.005 U	0.005 UJ	0.005 UJ
.1.2-Trichloroethene	0.005 UJ	0.005 U	0.005 U	0.005 UJ	0.005 UJ
richloroethene	0.005 UJ	0.005 U	0.005 U	0.005 UJ	0.005 UJ
/inyl Acetate	0.01 UJ	0.01 U	0.01 U	0.01 UJ	0.01 UJ
/inyl Chloride	0.01 UJ	0.01 U	0.01 U	0.01 UJ	0.01 UJ
Cylenes	0.005 UJ	0.005 U	0.062	0.008 UJ	12.1 J
		TCL SVOCs (mg/	kg)		
-Chloro-3-methylphenol	0.330 UJ	0.330 U	0.330 U	0.330 U	0.330 U
-Chlorophenol	0.330 UJ	0.330 U	0.330 U	0.330 U	0.330 U
,4-Dimethylphenol	0.330 UJ	0.330 U	0.330 U	0.330 U	0.330 U
,4-Dinitrophenol	1.600 UJ	1.600 Ü	1.600 U	1.600 U	1.600 U
,6-Dinitro-2-Methylphenol	1.600 UJ	1.600 U	1.600 U	1.600 U	1.600 U
-Methylphenol	0.330 UJ	0.330 U	0.330 U	0.330 U	0.330 U
&4-Methylphenol	0.330 UJ	0.330 U	0.330 U	0.330 U	0.330 U
-Nitrophenol	1.600 UJ	1.600 U	1.600 U	1.600 U	1.600 U
-Nitrophenol	1.600 UJ	1.600 U	1.600 U	1.600 U	1.600 U
entachlorophenol	1.600 UJ	1.600 U	1.600 U	1.600 U 0.330 U	1.600 U 0.330 U
henol	0.330 UJ	0.330 U	0.330 U 0.660 U	0.330 U	0.660 U
,4,5-Trichlorophenol	0.660 UJ	0.660 U 0.330 U	0.330 U	0.660 U	0.330 U
,4,6-Trichlorophenol	0.330 UJ	0.33 UJ	0.330 U	0.33 UJ	1.42 J
cenaphthene	0.33 UJ 0.33 UJ	0.33 U	0.33 U	0.33 U	7.96
cenaphthylene	0.33 UJ	0.33 U	0.33 U	0.33 U	6.98
Anthracene Benzo(a)anthracene	0.33 UJ	0.33 U	0.33 U	0.33 U	4.13
Senzo(a)anthracene Senzo(b)fluoranthene	0.33 UJ	0.33 U	0.33 U	0.33 U	0.723
Senzo(k)fluoranthene	0.33 UJ	0.33 U	0.33 U	0.33 U	0.546
Benzo(g,h,I)perylene	0.33 UJ	0.33 U	0.33 U	0.33 U	0.496
Senzo(a)pyrene	0.33 UJ	0.33 U	0.33 U	0.33 U	0.924
Butylbenzylphthalate	0.33 UJ	0.33 U	0.33 U	0.33 U	0.33 U
vis(2-chloroethoxy)methane	0.33 UJ	0.33 U	0.33 U	0.33 U	0.33 U
is(2-chloroethyl) ether	0.33 UJ	0.33 U	0.33 U	0.33 U	0.33 U
Bis(2-chloroisopropyl)ether	0.33 UJ	0.33 U	0.33 U	0.33 U	0.33 U
3is(2-ethylhexyl)phthalate	0.33 UJ	0.33 U	0.33 U	0.33 U	0.33 U
-bromophenylphenylether	0.33 UJ	0.33 U	0.33 U	0.33 U	0.33 U
Carbazole	NA NA	NA NA	NA NA	NA	NA

- (1) U Indicates compound/analyte was analyzed for but not detected, the associated value is the sample reporting limit
 (2) J Indicates an estimated value
 (3) NA Not Analyzed

- (4) WI ~ NE Water table not encountered.

 (5) WI ~ n' Water table approximately n feet below ground surface.

	Sample Location and Depth (feet below ground surface)/Concentration B-10 B-11 B-12 B-12					
	B-10			B-12	B-15	
	6-8	4-5'	8-10	15-16	7-8'	
Compound/Analyte	WT ~ NE	WT~NE	WT ~ 8	WT ~ 8'	WT~NE	
		L SVOCs - Continued				
2-Chioronaphthalene	0.33 UJ	0.33 U	0.33 U	0.33 U	0.33 U	
1-Chlorophenyl-phenylether	0.33 UJ	0.33 U	0.33 U	0.33 U	0.33 U	
1-Chloroaniline	0.33 UJ	0.33 U	0.33 U	0.33 U	0.33 U	
Chrysene	0.33 UJ	0.33 U	0.33 U	0.33 U	4.45 0.33 U	
Dibenzo(a,h)anthracene	0.33 UJ	0.33 U	0.33 U	0.33 U	0.617	
Dibenzofuran	0.33 UJ	0.33 U	0.33 U	0.33 U	0.617 0.33 U	
Di-n-butylphthalate	0.33 UJ	0.33 U	0.33 U	0.33 U 0.33 U	0.33 U	
,2-Dichlorobenzene	0.33 UJ	0.33 U	0.33 U 0.33 U	0.33 U	0.33 U	
,3-Dichlorobenzene	0.33 UJ	0.33 U	0.33 UJ	0.33 UJ	0.33 UJ	
,4-Dichlorobenzene	0.33 UJ	0.33 UJ	0.33 UJ	0.66 U	0.66 U	
3,3-Dichlorobenzidine	0.66 UJ	0.66 U		0.86 U	0.33 U	
2,4-Dichlorophenol	0.33 UJ	0.33 U 0.33 U	0.33 U 0.33 U	0.33 U	0.33 U	
Diethylphthalate	0.33 UJ 0.33 UJ	0.33 U	0.33 U	0.33 U	0.33 U	
Dimethylphthalate	0.33 UJ	0.33 U	0.33 U	0.33 U	0.33 U	
2,4-Dinitrotoluene	0.33 UJ	0.33 U	0.33 U	0.33 U	0.33 U	
2,6-Dinitrotoluene Di-n-octylphthalate	0.33 UJ	0.33 U	0.33 U	0.33 U	0.33 U	
Pluoranthene	0.33 UJ	0.33 U	0.33 U	0.33 U	6.62	
Fluorene	0.33 UJ	0.33 U	0.33 U	0.33 U	7.51	
Hexachlorobenzene	0.33 UJ	0.33 U	0.33 U	0.33 U	0.33 U	
Texachlorobutadiene	0.33 UJ	0.33 U	0.33 U	0.33 U	0.33 U	
lexachlorocyclopentadiene	0.33 UJ	0.33 U	0.33 U	0.33 U	0.33 U	
Texachloroethane	0.33 UJ	0.33 U	0.33 U	0.33 U	0.33 U	
ndeno(1,2,3-cd)pyrene	0.33 UJ	0.33 U	0.33 U	0.33 U	0.33 U	
sophorone	0.33 UJ	0.33 U	0.33 U	0.33 U	0.33 U	
2-Methylnaphthalene	0.33 UJ	0.33 U	0.33 U	0.33 U	13.70	
Vaphthalene	0.33 UJ	0.33 U	0.33 U	0.33 U	17.20	
2-Nitroaniline	1.60 UJ	1.60 U	1.60 U	1.60 U	1.60 U	
3-Nitroaniline	1.60 UJ	1.60 U	1.60 U	1.60 U	1.60 U	
I-Nitroaniline	1.60 UJ	1.60 U	1.60 U	1.60 U	1.60 U	
Vitrobenzene	0.33 UJ	0.33 U	0.33 U	0.33 U	0.33 U	
N-nitrosodi-n-propylamine	0.33 UJ	0.33 U	0.33 U	0.33 U	0.33 UJ	
N-Nitrosodimethylamine	0.33 UJ	0.33 UJ	0.33 UJ	0.33 UJ	0.33 U	
N-nitrosodiphenylamine	0.33 UJ	0.33 U	0.33 U	0.33 U	0.33 U	
Phenanthrene	0.33 UJ	0.33 U	0.33 U	0.33 U	20.30	
Pyrene	0.33 UJ	0.33 U	0.33 U	0.33 U	9.31	
,2,4-Trichlorobenzene	0.33 UJ	0.33 UJ	0.33 UJ	0.33 UJ	0.33 UJ	
	Pri	ority Pollutant Metals	(mg/kg)			
Antimony	2 U	2.1 U	2.3 U	2.4 U	1.9 U	
Arsenic	6.6	2.6	3	5.7	8.2	
3arium	43.7	34.5	44.9	48	34.9	
3eryllium	0.65	0.58	0.46 U	0.52	0.53	
Cadmium	0.40	0.21 U	0.23 U	0.24 U	0.19 U	
Chromium	19.1	18.8	13.8	16.8	16.1	
Copper	24.9	29.6	17.1	29.6	25.9	
ead	11.3	13.2	10.5	13	12.9	
Летсигу	0.04 U	0.04 U	0.07	0.04 U	0.07	
Vickel	30.9	27.8	16.5	27.7	26.3	
Selenium	0.5 U	0.53 U	0.58 U	0.59 U	0.49 U	
Silver	0.5 U	0.53 U	0.58 U	0.59 U	0.49 U	
hallium	1 U	1.1 U	1.2 U	1.2	0.97 U	
Zinc	38.3	45.5	43.1	66.3	42.4	
Total Cyanide	NA	NA	NA	NA NA	NA	
	SPL	P Lead and Chromiu	n (mg/L)			
SPLP Lead	0.0075 U	0.0075 U	0.0075 U	0.0075 U	0.0075 U	
SPLP Chromium	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	

NOTES: NOTES:

(1) U - Indicates compound/analyte was analyzed for but not detected, the associated value is the sample reporting limit.
(2) J - Indicates an estimated value
(3) NA - Not Analyzed
(4) WT - NE - Water table not encountered.
(5) WI - n' - Water table approximately n feet below ground surface.

	Sample Location and Depth (feet below ground surface)/Concentration						
	B-15 B-17		B-17 DUP	B-19	B-19		
	11-12'	7-8'	7-8 WT - NE	2-4' WT ~ 6'	8-10' WT ~ 6'		
Compound/Analyte	WT ~ NE	WT ~ NE		VV I ~ 0	1 M1~0		
Acetone	0.025 U	TCL VOCs (mg/kg 0.025 UJ	0.025 UJ	1.2 UJ	0.025 U		
Benzene	0.005 U	3.51 J	3.08 J	3.560	0.005 U		
Bromodichloromethane	0.005 U	0.005 UJ	0.005 UJ	0.15 U	0.005 U		
Bromoform	0.005 U	0.005 UJ	0.005 UJ	0.2 U	0.005 U		
Bromomethane	0.01 U	0.01 UJ	0.01 UJ	0.2 U	0.01 U		
-Butanone	0.01 U	0.01 UJ	0.01 UJ	0.922	0.01 U		
Carbon Disulfide	0.006	0.046 J	0.049 J	0.25 U	0.005 U		
Carbon Tetrachloride	0.005 U	0.005 UJ	0.005 UJ	0.2 U	0.005 U		
Chlorobenzene	0.005 U	0.005 UJ	0.005 UJ	0.2 U	0.005 U		
Dibromochloromethane	0.01 U	0.005 UJ	0.005 UJ	0.2	0.01 U		
Chloroethane	0.005 U	0.01 UJ	0.01 UJ	0.25	0.005 U		
Chloroform	0.01 U	0.005 UJ	0.005 UJ	0.3 U	0.01 U		
Chloromethane	0.005 U	0.01 UJ	0.01 UJ	0.15 U 0.2 U	0.005 U 0.005 U		
,1-Dichloroethane	0.005 U	0.005 UJ	0.005 UJ		0.005 U		
,2-Dichloroethane	0.005 U	0.005 UJ 0.005 UJ	0.005 UJ 0.005 UJ	0.2 U 0.2 U	0.005 U		
,1-Dichloroethene is-1.2-dichloroethene	0.005 U 0.005 U	0.005 UJ	0.005 UJ	0.2 U	0.005 U		
rans-1,2-dichloroethene	0.005 U	0.005 UJ	0.005 UJ	0.25 U	0.005 U		
,2 Dichloropropane	0.005 U	0.005 UJ	0.005 UJ	0.15 U	0.005 U		
is-1,3-dichloropropene	0.005 U	0.005 UJ	0.005 UJ	0.15 U	0.005 U		
rans-1,3-dichloropropene	0.005 U	0.005 UJ	0.005 UJ	0.15 U	0.005 U		
thylbenzene	0.005 U	3.55 J	3.09 J	2.99	0.005 U		
-hexanone	0.01 U	0.01 UJ	0.01 UJ	0.15 U	0.01 U		
-methyl-2-pentanone	0.01 U	0.01 UJ	0.01 UJ	0.15 U	0.01 U		
Methylene Chloride	0.01 U	0.01 UJ	0.01 UJ	0.25 U	0.01 U		
tyrene	0.005 U	0.005 UJ	0.005 UJ	0.702	0.005 U		
,1,2,2-Tetrachloroethane	0.005 U	0.005 UJ	0.005 UJ	0.2 U	0.005 U		
etrachloroethene	0.005 U	0.005 UJ	0.005 UJ	0.15 U	0.005 U		
'oluene	0.005 U	0.106 J	0.145 J	3.89	0.005 UJ		
,1,1-Trichloroethane	0.005 U	0.005 UJ	0.005 UJ	0.2 U	0.005 U		
,1,2-Trichloroethene	0.005 U	0.005 UJ	0.005 UJ	0.2 U	0.005 U		
richloroethene	0.005 U	0.007 J	0.007 J	0.2 U	0.005 UJ		
/inyl Acetate	0.01 U	0.01 UJ	0.01 UJ 0.01 UJ	0.35 U 0.2 U	0.01 U		
'inyl Chloride	0.01 U 0.005 U	0.01 UJ 6.2 J	0.01 UJ 5.24 J	7.13	0.01 U		
ylenes	U.UUS U	TCL SVOCs (mg/kg		1.13	0.005 03		
-Chloro-3-methylphenol	0.330 U	0.330 UJ	0.330 U	0.330 U	0.330 U		
-Chlorophenol	0.330 U	0.330 UJ	0.330 U	0.330 UJ	0.330 UJ		
,4-Dimethylphenol	0.330 U	0.330 UJ	0.330 U	0.330 U	0.330 U		
,4-Dinitrophenol	1.600 U	1.600 U	1.600 U	1.600 U	1.600 U		
,6-Dinitro-2-Methylphenol	1.600 U	1.600 UJ	1.600 UJ	1.600 U	1.600 U		
-Methylphenol	0.330 U	0.330 UJ	0.330 UJ	0.330 UJ	0.330 U		
&4-Methylphenol	0.330 U	0.330 UJ	0.330 UJ	0.330 U	0.330 U		
-Nitrophenol	1.600 U	1.600 UJ	1.600 UJ	1.600 U	1.600 U		
-Nitrophenol	1.600 U	1.600 UJ	1.600 UJ	1.600 U	1.600 U		
entachlorophenol	1.600 U	1.600 UJ	1.600 UJ	1.600 U	1.600 U		
henol	0.330 U	0.330 UJ	0.330 UJ	0.330 U	0.400 U		
4,5-Trichlorophenol	0.660 U	0.660 UJ	0.660 UJ	0.660 U	0.660 U		
4,6-Trichlorophenol	0.330 U	0.330 UJ	0.330 UJ	0.330 U	0.330 U		
cenaphthene	0.33 UJ	13.5 J	18.1 J	7.46 J	0.33 UJ		
cenaphthylene	0.33 U	0.33 UJ	0.33 U	8.32	0.33 U		
nthracene	0.33 U	16.6 J	16.1 J	7.43	0.33 U		
enzo(a)anthracene	0.33 U	8.2 J	11	8.91 9.3	0.33 U 0.33 U		
enzo(b)fluoranthene	0.33 U	1.31 J	2.06	7.22	0.33 U		
enzo(k)fluoranthene	0.33 U	1.22 J	5.48	1.22	0.33 U		
enzo(g,h,I)perylene	0.33 U 0.33 U	3 J	2.94	1.08	0.33 U		
enzo(a)pyrene		2.09 J	0.33 U	0.33 U	0.33 U		
utylbenzylphthalate	0.33 U 0.33 U	0.33 UJ 0.33 UJ	0.33 U	0.33 U	0.33 U		
is(2-chloroethoxy)methane	0.33 U	0.33 UJ	0.33 U	0.33 U	0.33 U		
is(2-chloroethyl) ether is(2-chloroisopropyl)ether	0.33 U	0.33 UJ	0.33 U	0.33 U	0.33 U		
is(2-ethylhexyl)phthalate	0.33 U	0.33 UJ	0.33 U	0.33 U	0.33 U		
-bromophenylphenylether	0.33 U	0.33 UJ	0.33 U	0.33 U	0.33 U		
-oromopnenyipnenyiemer Carbazole	NA NA	NA	NA	NA NA	NA NA		

NOTES:

⁽¹⁾ U - Indicates compound/analyte was analyzed for but not detected, the associated value is the sample reporting limit (2) J - Indicates an estimated value.

(3) NA - Not Analyzed

(4) WT - NE - Water table not encountered

(5) WI - n' - Water table approximately n feet below ground surface.

	Sample Location and Depth (feet below ground surface)/Concentration					
	B-15 B-17		B-17 DUP B-19 B-19			
	11-12'	7-8'	7-8'	2-4	8-10'	
Compound/Analyte	WT ~ NE	WT ~ NE	WT~NE	WT ~ 6	WT ~ 6'	
		L SVOCs - Continued				
-Chloronaphthalene	0.33 U	0.33 UJ	0.33 U	0.33 U	0.33 U	
-Chlorophenyl-phenylether	0.33 U	0.33 UJ	0.33 U	0.33 U	0.33 U	
-Chloroaniline	0.33 U	0.33 UJ	0.33 U	0.33 U	0.33 U	
Chrysene	0.33 U	9.87 J	12.70	9.85	0.33 U	
Dibenzo(a,h)anthracene	0.33 U	1.12 J	2.58	0.33 U	0.33 U	
Dibenzofuran	0.33 U	0.33 UJ	0.33 U	0.33 U	0.33 U	
Di-n-butylphthalate	0.33 U	0.33 UJ	0.33 U	0.33 U	0.33 U	
,2-Dichlorobenzene	0.33 U	0.33 UJ	0.33 U	0.33 U	0.33 U	
,3-Dichlorobenzene	0.33 U	0.33 UJ	0.33 U	0.33 U	0.33 U	
,4-Dichlorobenzene	0.33 UJ	0.33 UJ	0.33 U	0.33 UJ	0.33 UJ	
3,3-Dichlorobenzidine	0.66 U	0.66 UJ	0.66 U	0.66 U	0.66 U	
,4-Dichlorophenol	0.33 U	0.33 UJ	0.33 U	0.33 U	0.33 U	
Diethylphthalate	0.33 U	0.33 UJ	0.33 U	0.33 U	0.33 U	
Dimethylphthalate	0.33 U	0.33 UJ	0.33 U	0.33 U	0.33 U	
,4-Dinitrotoluene	0.33 U	0.33 UJ	0.33 U	0.33 U	0.33 U	
,6-Dinitrotoluene	0.33 U	0.33 UJ	0.33 U	0.33 U	0.33 U	
Di-n-octylphthalate	0.33 U	0.33 UJ	0.33 U	0.33 U	0.33 U	
luoranthene	0.33 U	15.30 J	18.70	18.00	0.33 U	
luorene	0.33 U	22.50 J	31.40	29.80	0.33 U	
Iexachlorobenzene	0.33 U	0.33 UJ	0.33 U	0.33 U	0.33 U	
Iexachlorobutadiene	0.33 U	0.33 UJ	0.33 U	0.33 U	0.33 U	
Iexachlorocyclopentadiene	0.33 U	0.33 UJ	0.33 U	0.33 UJ	0.33 UJ	
lexachloroethane	0.33 U	0.33 UJ	0.33 U	0.33 U	0.33 U	
ndeno(1,2,3-cd)pyrene	0.33 U	1.84 J	3.83	0.90	0.33 U	
sophorone	0.33 U	0.33 UJ	0.33 U	0.33 U	0.33 U	
-Methylnaphthalene	0.33 U	23.90 J	32.70	17.70	0.33 UJ	
Vaphthalene	0.33 U	31.90 J	44.90	30.90	0.33 U	
-Nitroaniline	1.60 U	1.60 UJ	1.60 U	1.60 U	1.60 U	
-Nitroaniline	1.60 U	1.60 UJ	1.60 U	1.60 U 1.60 U	1.60 U 1.60 U	
-Nitroaniline	1.60 U	1.60 UJ	1.60 U	0.33 U	0.33 U	
litrobenzene	0.33 U	0.33 UJ	0.33 U		0.33 UJ	
N-nitrosodi-n-propylamine	0.33 UJ	0.33 UJ	0.33 U	0.33 UJ 0.33 U	0.33 U	
N-Nitrosodimethylamine	0.33 U	0.33 UJ	0.33 U	0.33 U	0.33 U	
N-nitrosodiphenylamine	0.33 U	0.33 UJ	0.33 U	70.60	0.33 U	
Phenanthrene	0.33 U	59.00 J	74.80	25.00	0.33 U	
byrene .	0.33 U	21.60 J	25.20	0.33 UJ	0.33 UJ	
,2,4-Trichlorobenzene	0.33 UJ	0.33 UJ	0.33 U	0.33 01	0.33 03	
-		ority Pollutant Metals		1077	2211	
Antimony	2.1 U	2.4 U	2.3 U	1.9 U	2.3 U	
Arsenic	29.1	5.7	6	6.3	11.3	
arium	35.2	67.5	56	54.5	55.9	
Beryllium	0.57	0.66	0.62	0.66	0.82	
admium	0.21 U	0.53	0.89	0.85	0.42	
hromium	16.9	20.3	16.7	17.3	21.8	
Copper	30.1	26.6	29.6	25	32.6	
ead	23.9	235	127	22.6	15.7	
fercury	0.04 U	0.06	0.06	0.09	0.04 U	
lickel	34	23.7	26.8	26.1	40.2	
elenium	0.56	0.6 U	0.57 U	0.57	0.71	
ilver	0.51 U	0.6 U	0.57 U	0.49 U	0.57 U	
hallium	1 U	1.2 U	1.1 U	0.97	1.4	
ine	41.1	268	397	252	55.2	
otal Cyanide	NA	NA	NA	NA	NA	
	SPI	LP Lead and Chromius	n (mg/L)			
PLP Lead	0.0075 U	0.0075 U	0.0094	0.0075 U	0.0075	
PLP Chromium	0.05 U	0.05 U	0.05 U	0.05 U	0.05	

[|] SPLP Chromium | 0.05 U | 0.0

			Depth (feet below groun		оп
	SS-07	SS-08	SS-09	SS-11	
	0-2'	0-2'	0-2'	0-2'	
Compound/Analyte	_1			1	
	0.005.777	TCL VOCs (mg/l		0.025 UJ	
Acetone	0.025 UJ 0.005 U	0.137 UJ 0.005 U	0.106 UJ .005 U	.014	
Benzene Bromodichloromethane	0.005 U	0.005 U	0.005 U	0.005 U	
Bromoform	0.005 U	0.005 U	0.005 U	0.005 U	
Bromomethane	0.01 U	0.01 U	0.01 U	0.01 U	
2-Butanone	0.01 U	0.051	0.032	0.01 U	
Carbon Disulfide	0.005 U	0.005 U	0.005 U	0.005	
Carbon Tetrachloride	0.005 U	0.005 U	0.005 U	0.005 U	
Chlorobenzene	0.005 U	0.005 U	0.005 U	0.005 U	
Dibromochloromethane	0.005 U	0.005 U	0.005 U	0.005 U 0.01 U	
Chloroethane	0.01 U	0.01 U 0.005 U	0.01 U 0.005 U	0.01 U	
Chloroform Chloromethane	0.005 U 0.01 U	0.003 U	0.003 U	0.003 U	
1,1-Dichloroethane	0.005 U	0.005 U	0.005 U	0.005 U	
1.2-Dichloroethane	0.005 U	0.005 U	0.005 U	0.005 U	
1,1-Dichloroethene	0.005 U	0.005 U	0.005 U	0.005 U	
cis-1,2-dichloroethene	0.005 U	0.005 U	0.005 U	0.005 U	
rans-1,2-dichloroethene	0.005 U	0.005 U	0.005 U	0.005 U	
1,2 Dichloropropane	0.005 U	0.005 U	0.005 U	0.005 U	
cis-1,3-dichloropropene	0.005 U	0.005 U	0.005 U	0.005 U 0.005 U	·
trans-1,3-dichloropropene	0.005 U	0.005 U 0.005 U	0.005 U 0.005 U	0.005 U	
Ethylbenzene	0.005 U 0.01 U	0.003 U	0.003 U	0.003 U	
2-hexanone 4-methyl-2-pentanone	0.01 U	0.01 U	0.01 U	0.01 U	
Methylene Chloride	0.01 U	0.01 U	0.01 U	0.01 U	
Styrene	0.005 U	0.005 U	0.005 U	0.005 U	
1,1,2,2-Tetrachloroethane	0.005 U	0.005 U	0.005 U	0.005 U	
Fetrachloroethene	0.005 U	0.005 U	0.005 U	0.005 UJ	
Foluene ·	0.005 U	0.005 U	0.005 U	0.005 U	
1,1,1-Trichloroethane	0.005 U	0.005 U	0.005 U	0.005 U 0.005 U	
1,1,2-Trichloroethene	0.005 U 0.005 U	0.005 U 0.005 U	0.005 U 0.005 U	.007 J	
Trichloroethene Vinyl Acetate	0.003 U	0.003 U	0.003 U	0.01 U	
Vinyl Chloride	0.01 U	0.01 U	0.01 U	0.01 U	
Xylenes	0.005 U	0.005 U	0.005 U	0.005 U	
		TCL SVOCs (mg	(kg)		
4-Chloro-3-methylphenol	0.330 U	0.330 U	0.330 U	0.330 U	
2-Chlorophenol	0.330 UJ	0.330 UJ	0.330 UJ	0.330 UJ	
2,4-Dimethylphenol	0.330 U	0.330 U	0.330 U	0.330 U	
2,4-Dinitrophenol	0.330 U	1.600 U	1.600 U	1.600 U 1.600 U	
4,6-Dinitro-2-Methylphenol	1.600 U	1.600 U 0.330 UJ	1.600 U 0.330 UJ	0.330 UJ	
2-Methylphenol 3&4-Methylphenol	0.330 UJ 0.330 U	0.330 U	0.330 U	0.330 U	
2-Nitrophenol	1.600 U	1.600 U	1.600 U	1.600 U	
4-Nitrophenol	1.600 U	1.600 U	1.600 U	1.600 U	
Pentachlorophenol	1.600 U	1.600 U	1.600 U	1.600 U	
Phenol	0.330 U	0.330 U	0.330 U	0.330 U	
2,4,5-Trichlorophenol	0.660 U	0.660 U	0.660 U	0.660 U	
2,4,6-Trichlorophenol	0.330 U	0.330 U	0.330 U	0.330 U	
Acenaphthene	1.19 J	0.33 UJ	0.330 UJ	0.33 UJ 0.434	
Acenaphthylene	0.33 U	0.33 U 0.33 U	0.330 U 0.330 U	0.434 0.33 U	
Anthracene Pango(a)anthracene	7.99		0.330 U	0.33 U	
Benzo(a)anthracene Benzo(b)fluoranthene	19.3	0.33 U 0.33 U	0.330 U	0.33 U	
Benzo(k)fluoranthene	4.71	0.33 U	0.330 U	0.33 U	
Benzo(g,h,l)perylene	4.6	0.33 U	0.330 U	0.33 U	
Benzo(a)pyrene	4.47	0.33 U	0.330 U	0.33 U	
Butylbenzylphthalate	0.33 U	0.33 U	0.330 U	0.33 U	
bis(2-chloroethoxy)methane	0.33 U	0.33 U	0.330 U	0.33 U	
bis(2-chloroethyl) ether	0.33 U	0.33 U	0.330 U	0.33 U	
Bis(2-chloroisopropyl)ether	0.33 U	0.33 U	0.330 U	0.33 U	
Bis(2-ethylhexyl)phthalate 4-bromophenylphenylether	0.33 U 0.33 U	0.33 U 0.33 U	0.330 U 0.330 U	0.33 U 0.33 U	

- NOTES:

 (1) U Indicates compound/analyte was analyzed for but not detected, the associated value is the sample reporting limit.

 (2) J Indicates an estimated value.

 (3) NA Not Analyzed.

 (4) WT NE Water table not encountered.

 (5) WI n' Water table approximately n feet below ground surface.

	T S	ample Location and I	Depth (feet below grou	nd surface)/Concentration	
	SS-07	SS-08	SS-09	SS-11	
	0-2'	0-2'	0-2'	0-2	
Compound/Analyte	NA	NA	NA	NA	
	TC	L SVOCs - Continued	l (mg/kg)		
2-Chloronaphthalene	0.33 U	0.33 U	0.330 U	0.33 U	
4-Chlorophenyl-phenylether	0.33 U	0.33 U	0.330 U	0.33 U	
4-Chloroaniline	0.33 U	0.33 U	0.330 U	0.33 U	
Chrysene	18.90	0.33 U	0.330 U	0.33 U	
Dibenzo(a,h)anthracene	0.74	0.33 U	0.330 U	0.33 U	
Dibenzofuran	0.41	0.33 U	0.330 U	0.33 U	
Di-n-butylphthalate	0.33 U	0.33 U	0.330 U	0.33 U	
1,2-Dichlorobenzene	0.33 U	0.33 U	0.330 U	0.33 U	,
1,3-Dichlorobenzene	0.33 U	0.33 U	0.330 U	0.33 U	
1,4-Dichlorobenzene	0.33 UJ	0.33 UJ	0.330 UJ	0.33 UJ	
3,3-Dichlorobenzidine	0.66 ป	0.66 U	0.660 U	0.66 U	
2,4-Dichlorophenol	0.33 U	0.33 U	0.330 U	0.33 U	
Diethylphthalate	0.33 U	0.33 U	0.330 U	0.33 U	
Dimethylphthalate	0.33 U	0.33 U	0.330 U	0.33 U	
2,4-Dinitrotoluene	0.33 U	0.33 U	0.330 U	0.33 U	
2,6-Dinitrotoluene	0.33 U	0.33 U	0.330 U	0.33 U 0.33 U	
Di-n-octylphthalate	0.33 U	0.33 U	0.330 U	0.33 U	
Fluoranthene	53.60	0.33 U	0.330 U 0.330 U	0.33 U	
Fluorene	1.99	0.33 U	0.330 U	0.33 U	
Hexachlorobenzene	0.30 U	0.33 U	0.330 U	0.33 U	
Hexachlorobutadiene	0.33 U 0.33 UJ	0.33 U 0.33 UJ	0.330 UJ	0.33 UJ	
Hexachlorocyclopentadiene	0.33 UJ	0.33 U	0.330 U	0.33 U	
Hexachloroethane	3.74	0.33 U	0.330 U	0.33 U	
Indeno(1,2,3-cd)pyrene	0.33 U	0.33 U	0.330 U	0.33 U	
Isophorone	0.33 U	0.33 U	0.330 U	0.33 U	
2-Methylnaphthalene Naphthalene	0.33 U	0.33 U	0.330 U	0.33 U	
2-Nitroaniline	1.60 U	1.60 U	1.600 U	1.60 U	
3-Nitroaniline	1.60 U	1.60 U	1.600 U	1.60 U	
4-Nitroaniline	1.60 U	1.60 U	1.600 U	1.60 U	
Nitrobenzene	0.33 U	0.33 U	0.330 U	0.33 U	
N-nitrosodi-n-propylamine	0.33 UJ	0.33 UJ	0.330 UJ	0.33 UJ	
N-Nitrosodimethylamine	0.33 U	0.33 U	0.330 U	0.33 U	
N-nitrosodiphenylamine	0.33 U	0.33 U	0.330 U	0.33 U	
Phenanthrene	22.10	0.33 U	0.330 U	0.33 U	
Pyrene	41.30	0.33 UJ	0.330 U	0.33 U	
1,2,4-Trichlorobenzene	0.33 UJ	0.66 U	0.330 UJ	0.33 UJ	
	Pr	iority Pollutant Metal			
Antimony	2 U	2 U	2 U	2.1 U	
Arsenic	4.5	6.1	5.9	5.4	
Barium	48.3	90.6	107	66.1	
Beryllium	0.55	0.91	1	1.2	
Cadmium	0.54	0.57	0.26	0.41	
Chromium	16.1	22.4	24.8	20.5	
Copper	21.4	31.6	21.5	29.3	
Lead	70.8	63.5	14.7	48.5	
Mercury	0.17	0.11	0.12	0.05	
Nickel	18.4	24.2	36.8	29.8	
Selenium	0.72	0.66	0.5 U	0.81	
Silver	0.5 U	0.51 U	0.5 U	0.52 U	
Thallium	1 U	1 U	0.99 U	1 U	
Zinc	100	77.3	44.4 NA	85.8 NA	
Total Cyanide	NA	NA NA	NA NA	NA	
		LP Lead and Chromin			
SPLP Lead	0.023	0.025	0.011	0.039	
SPLP Chromium	0.05 U	0.05 U	0.05 U	0.05 U	

NOTES:

- NOTES:

 (1) U Indicates compound/analyte was analyzed for but not detected, the associated value is the sample reporting limit.

 (2) J Indicates an estimated value.

 (3) NA Not Analyzed.

 (4) WI NE Water table not encountered.

 (5) WI n' Water table approximately n feet below ground surface.

Table 4
Groundwater Analytical Laboratory Data
Rogers Park Main Parcel

		Sample Location and Date Sampled/Concentration					
	RPM-MW001-002			RPM-MW004-002	RPM-MW005-002		
Compound/Analyte	06/22/2001	06/22/2001	06/22/2001	06/22/2001	06/22/2001		
		TCL VOCs (1	ng/L)				
Acetone	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U		
Benzene	0.005 ป	0.005 U	0.005 U	0.005 U	0.005 U		
Bromodichloromethane	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U		
Bromoform	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U		
Bromomethane	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U		
2-Butanone	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U		
Carbon Disulfide	0.005 U	0.005 U	0.005 U 0.005 U	0.005 U	0.005 U 0.005 U		
Carbon Tetrachloride	0.005 U 0.005 U	0.005 U 0.005 U	0.005 U	0.005 U 0.005 U	0.005 U		
Chlorobenzene Chlorodibromomethane	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U		
Chloroethane	0.003 U	0.003 U	0.003 U	0.003 U	0.003 U		
Chloroform	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U		
Chloromethane	0.003 U	0.00 U	0.01 U	0.01 U	0.01 U		
1,1-Dichloroethane	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U		
1,2-Dichloroethane	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U		
1,1-Dichloroethene	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U		
cis-1,2-dichloroethene	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U		
trans-1,2-dichloroethene	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U		
1,2 Dichloropropane	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U		
cis-1,3-dichloropropene	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U		
trans-1,3-dichloropropene	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U		
Ethyl Benzene	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U		
2-Hexanone	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U		
4-Methyl-2-Pentanone	0.01 U	0.01 U 0.01 U	0.01 U 0.01 U	0.01 U 0.01 U	0.01 U 0.01 U		
Methylene Chloride	0.01 U 0.005 U	0.01 U	0.01 U	0.01 U	0.005 U		
Styrene 1,1,2,2-Tetrachloroethane	0.003 U	0.005 U	0.005 U	0.005 U	0.005 U		
Tetrachloroethene	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U		
Toluene	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U		
1,1,1-Trichloroethane	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U		
1.1.2-Trichloroethene	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U		
Trichloroethene	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U		
Vinyl Acetate	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U		
Vinyl Chloride	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U		
Xylenes (total)	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U		
		TCL SVOCs (
Naphthalene	0.001 U	0.001 U	0.001 U	0.001 U	0.009		
Acenaphthene	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U		
Acenaphthylene	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U		
Fluorene	0.002 U	0.002 U	0.002 U	0.002 U	0.003 0.002 U		
Phenanthrene	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U		
Anthracene	0.002 U 0.002 U	0.002 U 0.002 U	0.002 U 0.002 U	0.002 U 0.002 U	0.002 U		
Fluoranthene	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U		
Pyrene Chrysene	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U		
Benzo(a)anthracene	0.001 U	0.0001 U	0.0001 U	0.00013 U	0.0001 U		
Benzo(b)fluoranthene	0.00013 U	0.00018 U	0.00018 U	0.00018 U	0.00018 U		
Benzo(k)fluoranthene	0.00017 U	0.00017 U	0.00017 U	0.00017 U	0.00017 U		
Benzo(a)pyrene	0.0002 U	0.0002 U	0.0002 U	0.0002 U	0.0002 U		
Indeno(1,2,3-cd)pyrene	0.0001 U	0.0001 U	0.0001 U	0.0001 U	0.0001 U		
Dibenz(a,h)anthracene	0.0001 U	0.0001 U	0.0001 U	0.0001 U	0.0001 U		
Benzo(g,h,i)perylene	0.0001 U	0.0001 U	0.0001 U	0.0001 U	0.0001 U		
	RCI	RA Metals and Total	Cyanide (mg/L)				
Arsenic	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U		
Barium	0.016	0.017	0.022	0.016	0.119		
Cadmium	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U		
Chromium	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U		
Lead	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U		
Mercury	0.0005 U	0.0005 U	0.0005 U	0.0005 U	0.0005 U		
Selenium	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U		
Silver	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U		
Total Cyanide	0.365	0.089	0.01 U	0.015	0.015		

NOTES:

⁽¹⁾ U - Indicates compound/analyte was analyzed for but not detected, the associated value is the sample reporting limit

Data Evaluation Memoranda

The Peoples Gas Light and Coke Company
The Rogers Park Sub-Shop
Main Parcel

Soil Sample Data Evaluation Memoranda

The Peoples Gas Light and Coke Company
The Rogers Park Sub-Shop
Main Parcel

BURNS & McDONNELL

Client:

Peoples Gas

Site:

Rogers Park Main Parcels

Project #: 27194

... 17

File No.: I.7
Title: Da

Data Validation of Soil Samples

Collected from May 2 to May 4, 2001

Prepared By: Courtney Marhoefer

/Kimberly Nichols

Date: June 13, 2001/ August 7, 2001

Checked By: Christy Barry

Date: June 6, 2001/ August 9, 2001

PURPOSE

The purpose of this document is to present the evaluation and validation of soil sampling analytical results.

VALIDATION CRITERIA

The evaluation and validation consisted of the following:

- Checked analytical holding times.
- Checked surrogate recoveries.
- Reviewed laboratory blank analyses.
- Reviewed laboratory control standards.
- Reviewed laboratory annotations.

SAMPLING EFFORT

Soil Samples were collected at the Peoples Gas Rogers Park Main Parcel in Chicago, Illinois from May 2 to May 4, 2001 and June 14 to June 15, 2001. Soil samples were taken at 21 boring locations during site investigation activities.

LABORATORY

Samples were analyzed and validated by STAT Analysis Corporation of Chicago, Illinois in accordance with Illinois Site Remediation Program analytical data reduction and validation guidelines.

CONCLUSIONS

Laboratory data have been reviewed and are acceptable for use with qualification. STAT Analysis Corporation performed laboratory validation and determined that all analytical results were usable. In cases where laboratory standards were not met, data qualification was provided. Based on the provided information, Burns & McDonnell performed further evaluation and validation, determining that the overall quality of the analytical results was good; however due to minor analytical quality control problems such as poor surrogate and laboratory control sample recoveries, some resultant values were flagged estimated "J" or "UJ".

REFERENCES

The following reference documents were used:

- (1) Illinois Administrative Code, 1998. *Site Remediation Program*, Title 35: Environmental Protection, Subtitle G: Waste Disposal, Chapter I: Pollution Control Board, Part 740.
- (2) United States Environmental Protection Agency (U.S. EPA), 1994. Contract Laboratory Program National Functional Guidelines for Organic Data Review, February.
- (3) USEPA, 1994. Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, February.
- (4) USEPA, 1998. Test Methods for Evaluating Solid Wastes, Physical/Chemical Methods, EPA Publication No. SW-846, [Third Edition (September 1986), as amended by Updates I (July 1992), II (September 1994), IIA (August 1993), IIB (January 1995), III (December 1996), IVA (January 1998)].
- (5) American Society for Testing and Materials (ASTM), 2001. *Test Method D2974-00 Standard Test Methods for Moisture, Ash and Organic Matter of Peat and Other Organic Soils*, ASTM Book of Standards Volume: 04.08. Soil and Rock (I): D 420 D 4914. West Conshohocken, PA.

SAMPLE INFORMATION

Table 1 presents sample numbers, depth and analyses requested. Table 2 lists the methods used to analyze the soil samples.

HOLDING TIME EVALUATION

Table 3 presents the analytical holding times that were used to evaluate and validate the extractions and analyses performed. All sample extractions and analyses were performed within the holding time criteria; therefore, no qualification was necessary.

SURROGATE RECOVERY EVALUATION

Surrogate recoveries were within the acceptable laboratory limits; except for the following:

- BTEX analyses surrogate recoveries were above the acceptable limits for the following samples: SB34-001, SB42-001, and SB47-001. Therefore all detected BTEX results for the above mentioned samples are qualified estimated "J".
- PAH analysis surrogate recovery was outside the acceptable limits for the following sample:
 SB44-002. Therefore all PAH results for the aforementioned sample are qualified estimated "J".
- One BTEX surrogate recovery was below the acceptable limit and one was above the acceptable limit for sample SB52-001. Detected results for this sample were qualified estimated "J" and non-detected results were qualified estimated "UJ".

LABORATORY BLANK ANALYSIS EVALUATION

Laboratory blanks were prepared and run for this sampling event. The soil blank surrogate recovery was outside the QC limits, however, the remaining samples in the batch showed acceptable surrogate recoveries; therefore, the blank problem will be treated as an isolated occurrence. All laboratory blanks were non-detect; therefore, no qualification is necessary.

LABORATORY CONTROL STANDARDS EVALUATION

Laboratory control standards (LCS) were prepared and run for this sampling event. The selenium analysis laboratory control standard was outside the acceptable limits for the following samples: SB32-001, SB32-002, SB32-003, SB33-001, SB33-002, SB33-003, SB33-004, SB34-001, SB40-001, SB40-001, SB40-001, SB42-001, SB42-001, SB42-001, SB42-001, SB44-001, SB44-002, SB45-001, SB46-001, SB46-002, SB47-001. Therefore, all detected selenium results for the aforementioned samples were qualified estimated "J" and all non-detect results were qualified estimated "UJ".

LABORATORY ANNOTATION REVIEW

A review of the STAT Analysis Corporation laboratory annotation indicates that the overall quality of the analytical results is acceptable. The acetone result for sample SB39-01 and cis-1,2-dichloroethene for sample SB39-003 were qualified estimated "E" by the laboratory because the analyte concentration exceeded the upper calibration limit of the analytical instrument.

Table 1 List of Sample Numbers, Depth and Analyses			
Sample Number	Sample Depth (feet below ground surface)	Analyses	
SB24-001	0.5-1	Benzene, toluene, ethylbenzene, xylenes (BTEX), styrene, polynuclear aromatic hydrocarbons (PAHs), Resource Conservation and Recovery Act (RCRA) metals, and cyanide	
SB24-002	3-4	BTEX, styrene, PAHs, RCRA metals, and cyanide	
SB24-003	5-7	BTEX, styrene, PAHs, RCRA metals, and cyanide	
SB25-001	2-3	BTEX, styrene, PAHs, RCRA metals, and cyanide	
SB25-002	5-7	BTEX, styrene, PAHs, RCRA metals, and cyanide	
SB32-001	1-2	BTEX, styrene, PAHs, RCRA metals, and cyanide	
SB32-002	2-3	BTEX, styrene, PAHs, RCRA metals and cyanide	
SB32-003	3-5	BTEX, styrene, PAHs, RCRA metals and cyanide	
SB33-001	1-2	BTEX, styrene, PAHs, RCRA metals, cyanide, and Synthetic Precipitation Leaching Procedure (SPLP) lead	
SB33-002	2-3	BTEX, styrene, PAHs, RCRA metals, cyanide, and SPLP lead	
SB33-003	3-5	BTEX, styrene, PAHs, RCRA metals and cyanide	
SB33-004	7-9	BTEX, styrene, PAHs, RCRA metals, cyanide, and SPLP lead	
SB34-001	5-7	BTEX, styrene, PAHs, RCRA metals and cyanide	
SB39-001	0-1	Target Compound List (TCL) volatile organic compounds (VOCs), PAHs, RCRA metals and cyanide	
SB39-002	2-3	TCL VOCs, PAHs, RCRA metals and cyanide	
SB39-003	3-5	TCL VOCs, PAHs, RCRA metals and cyanide	

Table 1 List of Sample Numbers, Depth and Analyses		
le Depth (feet below	Analy	

Sample Number	Sample Depth (feet below ground surface)	Analyses
SB40-001	0-1	TCL VOCs, BTEX, PAHs, RCRA metals and cyanide
SB40-002	2-3	TCL VOCs, BTEX, PAHs, RCRA metals and cyanide
SB40-003	7-9	TCL VOCs, BTEX, PAHs, RCRA metals and cyanide
SB41-001	3-5	BTEX, PAHs, RCRA metals, and cyanide
SB42-001	2-3	BTEX, styrene, PAHs, RCRA metals, cyanide, and SPLP lead
SB42-002	3-5	BTEX, PAHs, RCRA metals, and cyanide
SB43-001	5-7	BTEX, PAHs, RCRA metals, and cyanide
SB44-001	2-3	BTEX, styrene, PAHs, RCRA metals, cyanide, and SPLP lead
SB44-002	5-7	BTEX, PAHs, RCRA metals, and cyanide
SB45-001	3-5	BTEX, PAHs, RCRA metals, and cyanide
SB46-001	1-2	BTEX, PAHs, RCRA metals, and cyanide
SB46-002	4-6	BTEX, PAHs, RCRA metals, and cyanide
SB76-001	3-5	TCL VOCs, PAHs, cyanide and RCRA metals
SB76-002	6-8	TCL VOCs, PAHs, cyanide and RCRA metals
SB77-001	3-4	TCLVOCs, PAHs, cyanide, RCRA metals and polychlorinated byphenols (PCBs)
SB77-002	8-10	TCL VOCs, PAHs, cyanide, RCRA metals and PCBs
SB78-001	3-5	TCL VOCs, PAHs, cyanide, RCRA metals and PCBs

Table 1 List of Sample Numbers, Depth and Analyses			
Sample Number	Sample Depth (feet below ground surface)	Analyses	
SB78-002	6-8	TCL VOCs, PAHs, cyanide, RCRA metals and PCBs	
SB79-001	2-4	TCL VOCs, PAHs, cyanide, RCRA metals and PCBs	
SB79-002	6-8	TCL VOCs, PAHs, cyanide, RCRA metals and PCBs	
SB80-001	2-4	TCL VOCs, PAHs, cyanide, RCRA metals and PCBs	
SB81-001	3-4	VOCs, PAHs, cyanide and RCRA metals	
SB81-002	6-8	TCL VOCs, PAHs, cyanide, RCRA metals and PCBs	
SB82-001	7-8	TCL VOCs, PAHs, cyanide, RCRA metals and PCBs	
SB83-001	3-4	TCL VOCs, PAHs, cyanide, RCRA metals and PCBs	
SB83-002	6-8	TCL VOCs, PAHs, cyanide, RCRA metals and PCBs	

Table 2 Analytical Methods ¹			
Parameter	Analytical Method		
BTEX ³	5035/8260B ¹		
PAHs	8270C ¹		
RCRA metals	6020 ¹		
Mercury	7471A ¹		
Total cyanide	9010B/9014 ¹		
SPLP lead	1312/6020¹		
TCL VOCs	5035/8260B ¹		
Fraction organic compound (FOC)	ASTM D2974-87 ²		
PCBs	80821		
рН	9045C ¹		

Notes:

USEPA 1998
 ASTM 2001
 Sampled using USEPA Method 5035

Table 3 Analytical Holding Times		
Analyses Holding Time Fron Collection ⁽¹⁾		
BTEX	14 days	
PAHs, PCBs	14 days to extraction, 40 from extraction to analysis	
Total cyanide	14 days	
Mercury	28 days	
RCRA metals	6 months	
SPLP lead	180 days to 1312 extraction, 180 days from extraction to analysis	

Note: (1) U.S. EPA 1998 and Test America 2000.

Groundwater Sample Data Evaluation Memoranda

The Peoples Gas Light and Coke Company
The Rogers Park Sub-Shop
Main Parcel

BURNS & McDONNELL

Client:

Peoples Gas

Site:

Rogers Park Main Parcel

Project #: 27194

Title:

File No.: I.7

Data Validation of Groundwater Samples

Collected on June 22, 2001

Prepared By: Kimberly Nichols

Date: August 7, 2001 Checked By: Ben Cacace

Date: August 10, 2001

PURPOSE

The purpose of this document is to present the evaluation and validation of groundwater sampling analytical results.

VALIDATION CRITERIA

The evaluation and validation consisted of the following:

- Checked analytical holding times.
- Checked surrogate recoveries.
- Reviewed laboratory blank analysis.
- Reviewed laboratory control standards (LCS).
- Reviewed laboratory annotations.

SAMPLING EFFORT

Groundwater samples were collected at the Peoples Gas Rogers Park Sub-Shop in Chicago, Illinois on June 22, 2001. A total of 5 groundwater samples were collected from 5 monitoring wells during site investigation activities.

LABORATORY

Samples were analyzed and validated by STAT Analysis Corporation of Chicago, Illinois in accordance with Illinois Site Remediation Program analytical data reduction and validation guidelines.

CONCLUSIONS

Laboratory data have been reviewed and are acceptable for use. STAT Analysis Corporation performed laboratory validation and determined that all analytical results were usable. Burns & McDonnell performed further evaluation and validation, determining that the overall quality of the analytical results was good.

REFERENCES

The following reference documents were used:

(1) American Public Health Association, American Water Works Association, and Water Environment Federation, 1998. Standard Methods for the Examination of Water and Wastewater, 20th Ed.

- (2) United States Environmental Protection Agency (USEPA), 1994. Contract Laboratory Program National Functional Guidelines for Organic Data Review, February.
- (3) USEPA, 1994. Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, February.
- (4) USEPA, 1983. *Methods for Chemical Analysis of Water and Wastes*, EPA Publication No. 600/4-79-020, Revised, March.
- (5) USEPA, 1998. Test Methods for Evaluating Solid Wastes, Physical/Chemical Methods, EPA Publication No. SW-846, [Third Edition (September 1986), as amended by Updates I (July 1992), II (September 1994), IIA (August 1993), IIB (January 1995), III (December 1996), IVA (January 1998)].
- (6) USEPA, 1982. Test Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater, EPA Publication No. 600/4-82-057, July.

SAMPLE INFORMATION

Table 1 presents sample numbers and analyses requested. Table 2 lists the methods used to analyze the water samples.

HOLDING TIME EVALUATION

Table 3 presents the analytical holding times that were used to evaluate and validate the extractions and analyses performed. All sample extractions and analyses were performed within the holding time criteria; therefore, no qualification was necessary.

SURROGATE RECOVERY EVALUATION

Surrogate recoveries for all samples were within the acceptable laboratory limits; therefore, no qualification was necessary.

LABORATORY BLANK ANALYSIS EVALUATION

Laboratory blanks were prepared and run for this sampling event. All laboratory blanks were non-detect; therefore, no qualification was necessary.

LABORATORY CONTROL STANDARDS EVALUATION

Laboratory control standards (LCS) were prepared and run for this sampling event. The LCS for all samples were within the acceptable laboratory limits; therefore, no qualification was necessary.

LABORATORY ANNOTATION REVIEW

A review of the STAT Analysis Corporation laboratory annotation indicates that the overall quality of the analytical results is acceptable.

Table 1 List of Sample Numbers, Location and Analysis			
Sample Number	Analyses		
MW01-002	Targeted Compound List (TCL) volatile organic compounds (VOCs), polynuclear aromatic hydrocarbons (PAHs), Resource Conservation and Recovery Act (RCRA) metals and total cyanide		
MW02-002	TCL VOCs, PAHs, RCRA metals and total cyanide		
MW03-002	TCL VOCs, PAHs, RCRA metals and total cyanide		
MW04-002	TCL VOCs, PAHs, RCRA metals and total cyanide		
MW05-002	TCL VOCs, PAHs, RCRA metals and total cyanide		

Table 2 Analytical Methods ¹			
Parameter	Analytical Method		
TCL VOCs	5030B/8260B		
PAHs	8270C		
Total cyanide	9010B/9014		
RCRA metals	6020		
Mercury	7470A		

Note: (1) USEPA 1998.

Table 3 Water Analytical Holding Times			
Analyses Holding Time From Sample Collect			
TCL VOCs	14 days		
PAHs	7 days to extraction, 40 days to analysis		
Total cyanide	14 days		
RCRA metals	6 months		
Mercury	28 days		

Note: (1) USEPA 1998.

Analytical Results Data Sheets

The Peoples Gas Light and Coke Company
The Rogers Park Sub-Shop
Main Parcel

Soil Analytical Results Data Sheets

The Peoples Gas Light and Coke Company
The Rogers Park Sub-Shop
Main Parcel

Analytical Report

Client:

Burns and McDonnell

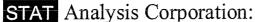
Project ID:

27194-4.07, Peoples-Rogers Park Main & East

Date Received: 5/2/01

Sample Number:

11, RPM-SB24-001


Date Taken: 5/1/01

Time Taken: 1040 Date Reported: 5/4/01

STAT	Project No.:	701808
STAT	Sample No.:	916973

_				
Analyte		Detection Limit	Result	Units
Solids, Total			83.93	%
BTEX/Styrene M Analysis Date:	ethod 5035/8260B 5/3/01			
Benzene		0.002	< 0.002	mg/Kg
Toluene		0.005	< 0.005	mg/Kg
Ethyl Benzene		0.005	< 0.005	mg/Kg
Xylenes (total)		0.005	< 0.005	mg/Kg
Styrene		0.005	< 0.005	mg/Kg
Polynuclear Aron	natic Hydrocarbons	Method 8270C		
Preparation Date:	5/3/01			
Analysis Date:	5/4/01			
Monhtholone		0.025	< 0.025	mg/Kg

Preparation Date:	5/3/01	02,00		
•				
Analysis Date:	5/4/01			
Naphthalene		0.025	< 0.025	mg/Kg
Acenapthylene		0.025	< 0.025	mg/Kg
Acenaphthene		0.025	< 0.025	mg/Kg
Fluorene		0.025	< 0.025	mg/Kg
Phenanthrene		0.025	0.076	mg/Kg
Anthracene		0.025	0.027	mg/Kg
Fluoranthene		0.025	0.175	mg/Kg
Pyrene		0.025	0.173	mg/Kg
Chrysene		0.025	0.084	mg/Kg
Benzo[a]anthracene	е	0.025	0.085	mg/Kg
Benzo[b]fluoranthe	ene	0.025	0.053	mg/Kg
Benzo[k]fluoranthene		0.025	0.067	mg/Kg
Benzo[a]pyrene		0.025	0.045	mg/Kg
Indeno[1,2,3-cd]py	rene	0.025	0.040	mg/Kg
Dibenz[a,h]anthrac	ene	0.025	< 0.025	mg/Kg
Benzo[g,h,i]peryler		0.025	0.036	mg/Kg
, 11				

Analytical Report

Client:

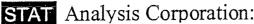
Burns and McDonnell

Project ID:

27194-4.07, Peoples-Rogers Park Main & East

Date Received: 5/2/01

Sample Number:


11, RPM-SB24-001

Date Taken: 5/1/01

Time Taken: 1040

STAT Project No.: 701808 STAT Sample No.: 916973

Analyte	Detection Limit	Result	Units	Date Analyzed	Method
Solids, Total		83.93	%	5/2/01	160.3
Total Cyanide	0.25	< 0.25	mg/Kg	5/4/01	9010B/9014
RCRA Metals				,	
Arsenic	0.050	14.6	mg/Kg	5/4/01	6020
Barium	0.500	23.1	mg/Kg	5/4/01	6020
Cadmium	0.500	< 0.500	mg/Kg	5/4/01	6020
Chromium	0.500	19.8	mg/Kg	5/4/01	6020
Lead	0.500	32.5	mg/Kg	5/4/01	6020
Mercury	0.040	< 0.040	mg/Kg	5/4/01	7471A
Selenium	1.00	1.04	mg/Kg	5/4/01	6020
Silver	0.500	< 0.500	mg/Kg	5/4/01	6020

STAT Analysis Corporation:
2201 West Campbell Park Drive, Chicago, Illinois 60612-3547 Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

Analytical Report

Client:

Burns and McDonnell

Project ID:

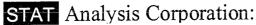
27194-4.07, Peoples-Rogers Park Main & East

Sample Number:

12, RPM-SB24-002

STAT Project No.: 701808

STAT Sample No.: 916974


Date Received: 5/2/01

Date Taken: 5/1/01

Time Taken: 1050

Date Reported: 5/4/01

Analyte	Detection Limit	Result	Units
Solids, Total		80.65	%
BTEX/Styrene Method 5035/8260B Analysis Date: 5/3/01			
Benzene Toluene Ethyl Benzene Xylenes (total) Styrene	0.002 0.005 0.005 0.005 0.005	0.007 < 0.005 < 0.005 < 0.005 < 0.005	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg
Polynuclear Aromatic Hydrocarbons Preparation Date: 5/3/01 Analysis Date: 5/4/01	Method 8270C		
Naphthalene Acenapthylene	0.025 0.025	< 0.025 < 0.025 < 0.025	mg/Kg mg/Kg mg/Kg
Acenaphthene Fluorene Phenanthrene	0.025 0.025 0.025	< 0.025 < 0.025 < 0.025	mg/Kg mg/Kg
Anthracene Fluoranthene Pyrene	0.025 0.025 0.025	< 0.025 < 0.025 < 0.025	mg/Kg mg/Kg mg/Kg
Chrysene Benzo[a]anthracene	0.025 0.025	< 0.025 < 0.025	mg/Kg mg/Kg
Benzo[b]fluoranthene Benzo[k]fluoranthene Benzo[a]pyrene	0.025 0.025 0.025	< 0.025 < 0.025 < 0.025	mg/Kg mg/Kg mg/Kg
Indeno[1,2,3-cd]pyrene Dibenz[a,h]anthracene Benzo[g,h,i]perylene	0.025 0.025 0.025	< 0.025 < 0.025 < 0.025	mg/Kg mg/Kg mg/Kg

Analytical Report

Client:

Burns and McDonnell

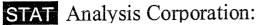
Project ID:

27194-4.07, Peoples-Rogers Park Main & East

12, RPM-SB24-002

Sample Number: STAT Project No.: 701808

STAT Sample No.: 916974


Time Taken: 1050

Date Received: 5/2/01

Date Reported: 5/4/01

Date Taken: 5/1/01

Analyte	Detection Limit	Result	Units	Date Analyzed	Method
Solids, Total		80.65	%	5/2/01	160.3
Total Cyanide	0.25	< 0.25	mg/Kg	5/4/01	9010B/9014
RCRA Metals				A	
Arsenic	0.050	10.7	mg/Kg	5/4/01	6020
Barium	0.500	60.2	mg/Kg	5/4/01	6020
Cadmium	0.500	< 0.500	mg/Kg	5/4/01	6020
Chromium	0.500	27.0	mg/Kg	5/4/01	6020
Lead	0.500	18.7	mg/Kg	5/4/01	6020
Mercury	0.040	0.050	mg/Kg	5/4/01	7471A
Selenium	1.00	< 1.00	mg/Kg	5/4/01	6020
Silver	0.500	< 0.500	mg/Kg	5/4/01	6020

Analytical Report

Client:

Burns and McDonnell

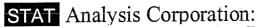
Project ID:

27194-4.07, Peoples-Rogers Park Main & East

Date Received: 5/2/01

Sample Number:

13, RPM-SB24-003


Date Taken: 5/1/01

STAT Project No.: 701808

Time Taken: 1100

STAT Sample No.: 916975

Analyte	Detection Limit	Result	Units
Solids, Total		85.15	%
BTEX/Styrene Method 5035/82	60B		
Analysis Date: 5/4/01			
Benzene	0.002	0.002	mg/K.g
Toluene	0.005	< 0.005	mg/Kg
Ethyl Benzene	0.005	< 0.005	mg/Kg
Xylenes (total)	0.005	< 0.005	mg/Kg
Styrene	0.005	< 0.005	mg/Kg
Polynuclear Aromatic Hydroca	rbons Method 8270C		
Preparation Date: 5/3/01			
Analysis Date: 5/4/01			
Naphthalene	0.025	< 0.025	mg/Kg
Acenapthylene	0.025	< 0.025	mg/Kg
Acenaphthene	0.025	< 0.025	mg/Kg
Fluorene	0.025	< 0.025	mg/Kg
Phenanthrene	0.025	< 0.025	mg/Kg
Anthracene	0.025	< 0.025	mg/Kg
Fluoranthene	0.025	< 0.025	mg/Kg
Pyrene	0.025	< 0.025	mg/Kg
Chrysene	0.025	< 0.025	mg/Kg
Benzo[a]anthracene	0.025	< 0.025	mg/Kg
Benzo[b]fluoranthene	0.025	< 0.025	mg/Kg
Benzo[k]fluoranthene	0.025	< 0.025	mg/Kg
Benzo[a]pyrene	0.025	< 0.025	mg/Kg
Indeno[1,2,3-cd]pyrene	0.025	< 0.025	mg/Kg
Dibenz[a,h]anthracene	0.025	< 0.025	mg/Kg
Benzo[g,h,i]perylene	0.025	< 0.025	mg/Kg

Analytical Report

Client:

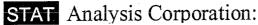
Burns and McDonnell

Project ID:

27194-4.07, Peoples-Rogers Park Main & East

Date Received: 5/2/01

Sample Number:


13, RPM-SB24-003

Date Taken: 5/1/01

Time Taken: 1100

STAT Project No.: 701808 STAT Sample No.: 916975

Analyte	Detection Limit	Result	Units	Date Analyzed	Method
Solids, Total		85.15	%	5/2/01	160.3
Total Cyanide	0.25	< 0.25	mg/Kg	5/4/01	9010B/9014
RCRA Metals				,	
Arsenic	0.050	5.72	mg/Kg	5/4/01	6020
Barium	0.500	39.4	mg/Kg	5/4/01	6020
Cadmium	0.500	< 0.500	mg/Kg	5/4/01	6020
Chromium	0.500	16.7	mg/Kg	5/4/01	6020
Lead	0.500	16.9	mg/Kg	5/4/01	6020
Mercury	0.040	0.044	mg/Kg	5/4/01	7471A
Selenium	1.00	< 1.00	mg/Kg	5/4/01	6020
Silver	0.500	< 0.500	mg/Kg	5/4/01	6020

Analytical Report

Client:

Burns and McDonnell

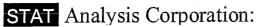
Project ID:

27194-4.07, Peoples-Rogers Park Main & East

Date Received: 5/2/01

Sample Number:

14, RPM-SB25-001


Date Taken: 5/1/01

Time Taken: 1130

STAT Project No.: 701808

STAT Sample No.: 916976

Analyte		Detection Limit	Result	Units
Solids, Total			76.34	%
BTEX/Styrene Me				
Analysis Date:	5/4/01			
Benzene		0.002	< 0.002	mg/Kg
Toluene		0.005	< 0.005	mg/Kg
Ethyl Benzene		0.005	< 0.005	mg/Kg
Xylenes (total)		0.005	< 0.005	mg/Kg
Styrene		0.005	< 0.005	mg/Kg
Polynuclear Arom	atic Hydrocarbons	s Method 8270C		
v	5/3/01			
Analysis Date:	5/4/01			
Naphthalene		0.025	< 0.025	mg/Kg
Acenapthylene		0.025	< 0.025	mg/Kg
Acenaphthene		0.025	< 0.025	mg/Kg
Fluorene		0.025	< 0.025	mg/Kg
Phenanthrene		0.025	< 0.025	mg/Kg
Anthracene		0.025	< 0.025	mg/Kg
Fluoranthene		0.025	0.034	mg/Kg
Pyrene		0.025	0.040	mg/Kg
Chrysene		0.025	< 0.025	mg/Kg
Benzo[a]anthracene		0.025	< 0.025	mg/Kg
Benzo[b]fluoranther	ne	0.025	< 0.025	mg/Kg
Benzo[k]fluoranther	ne	0.025	< 0.025	mg/Kg
Benzo[a]pyrene		0.025	< 0.025	mg/Kg
Indeno[1,2,3-cd]pyr	ene	0.025	< 0.025	mg/Kg
Dibenz[a,h]anthrace	ene	0.025	< 0.025	mg/Kg
Benzo[g,h,i]perylene	e	0.025	< 0.025	mg/Kg

Analytical Report

Client:

Burns and McDonnell

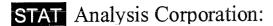
Project ID:

27194-4.07, Peoples-Rogers Park Main & East

Sample Number:

14, RPM-SB25-001

STAT Project No.: 701808


STAT Sample No.: 916976

Date Received: 5/2/01

Date Taken: 5/1/01

Time Taken: 1130

Analyte	Detection Limit	Result	Units	Date Analyzed	Method
Solids, Total		76.34	%	5/2/01	160.3
Total Cyanide	0.25	< 0.25	mg/Kg	5/4/01	9010B/9014
RCRA Metals				`	
Arsenic	0.050	7.83	mg/Kg	5/4/01	6020
Barium	0.500	73.4	mg/Kg	5/4/01	6020
Cadmium	0.500	< 0.500	mg/Kg	5/4/01	6020
Chromium	0.500	26.2	mg/Kg	5/4/01	6020
Lead	0.500	16.7	mg/Kg	5/4/01	6020
Mercury	0.040	< 0.040	mg/Kg	5/4/01	7471A
Selenium	1.00	< 1.00	mg/Kg	5/4/01	6020
Silver	0.500	< 0.500	mg/Kg	5/4/01	6020

nv(Pð.

AIHA
Environmental Lead
and industrial Hygiene
ACCREDITED

2201 West Campbell Park Drive, Chicago, Illinois 60612-3547
Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

Analytical Report

Client:

Burns and McDonnell

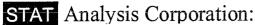
Project ID:

27194-4.07, Peoples-Rogers Park Main & East

Date Received: 5/2/01

Sample Number:

15, RPM-SB25-002


Date Taken: 5/1/01

STAT Project No.: 701808

Time Taken: 1140

STAT Sample No.: 916977

	Analyte	Detection Limit	Result	Units
	Solids, Total		94.94	%
	BTEX/Styrene Method 5035/8260B Analysis Date: 5/4/01			
	Benzene	0.002	0.003	mg/Kg
	Toluene	0.005	< 0.005	mg/Kg
	Ethyl Benzene	0.005	< 0.005	mg/Kg
	Xylenes (total)	0.005	< 0.005	mg/Kg
	Styrene	0.005	< 0.005	mg/Kg
	Polynuclear Aromatic Hydrocarbons	s Method 8270C		
	Preparation Date: 5/3/01 Analysis Date: 5/4/01			
	Naphthalene	0.025	< 0.025	mg/Kg
	Acenapthylene	0.025	< 0.025	mg/Kg
	Acenaphthene	0.025	< 0.025	mg/Kg
	Fluorene	0.025	< 0.025	mg/Kg
	Phenanthrene	0.025	< 0.025	mg/Kg
	Anthracene	0.025	< 0.025	mg/Kg
	Fluoranthene	0.025	< 0.025	mg/Kg
	Pyrene	0.025	< 0.025	mg/Kg
	Chrysene	0.025	< 0.025	mg/Kg
	Benzo[a]anthracene	0.025	< 0.025	mg/Kg
	Benzo[b]fluoranthene	0.025	< 0.025	mg/Kg
	Benzo[k]fluoranthene	0.025	< 0.025	mg/Kg
	Benzo[a]pyrene	0.025	< 0.025	mg/Kg
	Indeno[1,2,3-cd]pyrene	0.025	< 0.025	mg/Kg
	Dibenz[a,h]anthracene	0.025	< 0.025	mg/Kg
	Benzo[g,h,i]perylene	0.025	< 0.025	mg/Kg
Ji	Estimated value. Poor S.	urrogate rec	overy.	KAN

Analytical Report

Client:

Burns and McDonnell

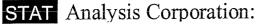
Project ID:

27194-4.07, Peoples-Rogers Park Main & East

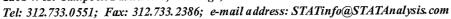
15, RPM-SB25-002

Sample Number:

STAT Project No.: 701808


STAT Sample No.: 916977

Date Received: 5/2/01


Date Taken: 5/1/01

Time Taken: 1140

Analyte	Detection Limit	Result	Units	Date Analyzed	Method
Solids, Total		94.94	%	5/2/01	160.3
Total Cyanide	0.25	< 0.25	mg/Kg	5/4/01	9010B/9014
RCRA Metals				٠	
Arsenic	0.050	2.44	mg/Kg	5/4/01	6020
Barium	0.500	39.7	mg/Kg	5/4/01	6020
Cadmium	0.500	< 0.500	mg/Kg	5/4/01	6020
Chromium	0.500	16.8	mg/Kg	5/4/01	6020
Lead	0.500	14.1	mg/Kg	5/4/01	6020
Mercury	0.040	< 0.040	mg/Kg	5/4/01	7471A
Selenium	1.00	< 1.00	mg/Kg	5/4/01	6020
Silver	0.500	< 0.500	mg/Kg	5/4/01	6020

2201 West Campbell Park Drive, Chicago, Illinois 60612-3547

Analytical Report

Client:

Burns & McDonnell

Project ID:

27194-4.07, Peoples-Rogers Park Main & East

Date Received: 5/3/01

Sample Number:

RPM-SB32-001

Date Taken: 5/2/01

Time Taken: 1100

STAT Project No.: 701817

Date Reported: 5/7/01

mg/Kg

mg/Kg

mg/Kg

		Date	Reported:
	Detection Limit	Result	Units
		84.20	%
ethod 5035/8260B 5/4/01			
	0.002	< 0.002	mg/Kg
	0.005	< 0.005	mg/Kg
	0.005	< 0.005	mg/Kg
	0.005	< 0.005	mg/Kg
	0.005	< 0.005	mg/Kg
natic Hydrocarbon	s Method 8270C		
5/4/01			
5/5/01			
	natic Hydrocarbon 5/4/01	ethod 5035/8260B 5/4/01 0.002 0.005 0.005 0.005 0.005 0.005 0.005	Detection Limit Result 84.20 Sethod 5035/8260B 5/4/01 0.002 < 0.002 0.005 < 0.005 0.005 < 0.005 0.005 < 0.005 0.005 < 0.005 0.005 < 0.005 0.005 < 0.005 0.005 0.005 0.005

0.025

0.025 0.025

Preparation Date:	5/4/01
Analysis Date:	5/5/01
Naphthalene	
Acenapthylene	
Acenaphthene	

Fluorene Phenanthrene Anthracene

0.025	< 0.025	mg/Kg
0.025	< 0.025	mg/Kg
0.025	< 0.025	mg/Kg
0.025	< 0.025	mg/Kg

< 0.025

< 0.025

< 0.025

1 1111111111111111111111111111111111111			
Fluoranthene	0.025	< 0.025	mg/Kg
Pyrene	0.025	< 0.025	mg/Kg
Chrysene	0.025	< 0.025	mg/Kg
Benzo[a]anthracene	0.025	< 0.025	mg/Kg
Benzo[b]fluoranthene	0.025	< 0.025	mg/Kg
Benzo[k]fluoranthene	0.025	< 0.025	mg/Kg
Benzo[a]pyrene	0.025	< 0.025	mg/Kg
Indeno[1,2,3-cd]pyrene	0.025	< 0.025	mg/Kg
Dibenz[a,h]anthracene	0.025	< 0.025	mg/Kg
Benzo[g,h,i]perylene	0.025	< 0.025	mg/Kg

Analytical Report

Client:

Burns & McDonnell

Project ID:

27194-4.07, Peoples-Rogers Park Main & East

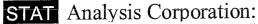
Date Received: 5/3/01

Sample Number:

RPM-SB32-001

Date Taken: 5/2/01

STAT Project No.: 701817


Time Taken: 1100

STAT Sample No.: 917048

Date Reported: 5/7/01

Analyte	Detection Limit	Result	Units	Date Analyzed	Method
Solids, Total		84.20	%	5/4/01	160.3
Total Cyanide	0.25	< 0.25	mg/Kg	5/4/01	9010B/9014
RCRA Metals					
Arsenic	0.050	3.55	mg/Kg	5/6/01	6020
Barium	0.500	66.3	mg/Kg	5/6/01	6020
Cadmium	0.500	< 0.500	mg/Kg	5/6/01	6020
Chromium	0.500	20.1	mg/Kg	5/6/01	6020
Lead	0.500	21.8	mg/Kg	5/6/01	6020
Mercury	0.040	< 0.040	mg/Kg	5/7/01	7471A
Selenium	1.00	< 1.00 UJ	mg/Kg	5/6/01	6020
Silver	0.500	< 0.500	mg/Kg	5/6/01	6020

UJ: Mondetect estimated value. Poor LCS recovery. KAR

Analytical Report

Client:

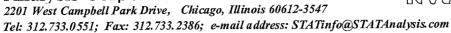
Burns & McDonnell

Project ID:

27194-4.07, Peoples-Rogers Park Main & East

Date Received: 5/3/01

Sample Number:


RPM-SB32-002

Date Taken: 5/2/01 Time Taken: 1115

STAT Project No.: 701817 STAT Sample No.: 917049

1			
Analyte	Detection Limit	Result	Units
Solids, Total		84.60	%
BTEX/Styrene Method 5035/8260B			
Analysis Date: 5/4/01			
Benzene	0.002	< 0.002	mg/Kg
Toluene	0.005	< 0.005	mg/Kg
Ethyl Benzene	0.005	< 0.005	mg/Kg
Xylenes (total)	0.005	< 0.005	mg/Kg
Styrene	0.005	< 0.005	mg/Kg
Polynuclear Aromatic Hydrocarbon	as Method 8270C		
Preparation Date: 5/4/01			
Analysis Date: 5/5/01			
Naphthalene	0.025	< 0.025	mg/Kg
Acenapthylene	0.025	< 0.025	mg/Kg
Acenaphthene	0.025	< 0.025	mg/Kg
Fluorene	0.025	< 0.025	mg/Kg
Phenanthrene	0.025	< 0.025	mg/Kg
Anthracene	0.025	< 0.025	mg/Kg
Fluoranthene	0.025	< 0.025	mg/Kg
Pyrene	0.025	< 0.025	mg/Kg
Chrysene	0.025	< 0.025	mg/Kg
Benzo[a]anthracene	0.025	< 0.025	mg/Kg
Benzo[b]fluoranthene	0.025	< 0.025	mg/Kg
Benzo[k]fluoranthene	0.025	< 0.025	mg/Kg
Benzo[a]pyrene	0.025	< 0.025	mg/Kg
Indeno[1,2,3-cd]pyrene	0.025	< 0.025	mg/Kg
Dibenz[a,h]anthracene	0.025	< 0.025	mg/Kg
Benzo[g,h,i]perylene	0.025	< 0.025	mg/Kg

STAT Analysis Corporation:

Analytical Report

Client:

Burns & McDonnell

Project ID:

27194-4.07, Peoples-Rogers Park Main & East

Date Received: 5/3/01

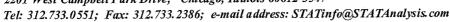
Sample Number:

RPM-SB32-002

Date Taken: 5/2/01

Time Taken: 1115

STAT Project No.: 701817 STAT Sample No.: 917049


Date Reported: 5/7/01

Analyte	Detection Limit	Result	Units	Date Analyzed	Method
Solids, Total		84.60	%	5/4/01	160.3
Total Cyanide	0.25	< 0.25	mg/Kg	5/4/01	9010B/9014
RCRA Metals					
Arsenic	0.050	2.05	mg/Kg	5/6/01	6020
Barium	0.500	58.8	mg/Kg	5/6/01	6020
Cadmium	0.500	< 0.500	mg/Kg	5/6/01	6020
Chromium	0.500	20.9	mg/Kg	5/6/01	6020
Lead	0.500	16.3	mg/Kg	5/6/01	6020
Mercury	0.040	< 0.040	mg/Kg	5/7/01	7471A
Selenium	1.00	< 1.00 UJ	mg/Kg	5/6/01	6020
Silver	0.500	< 0.500	mg/Kg	5/6/01	6020

UT: Nondetect estimated value. Poor LCS recovery KARI

2201 West Campbell Park Drive, Chicago, Illinois 60612-3547

Analytical Report

Client:

Burns & McDonnell

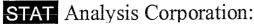
Project ID:

27194-4.07, Peoples-Rogers Park Main & East

Date Received: 5/3/01

Sample Number:

RPM-SB32-003


Date Taken: 5/2/01

STAT Project No.: 701817

Time Taken: 1120

STAT Sample No.: 917050

Analyte		Detection Limit	Result	Units
Solids, Total			81.71	%
BTEX/Styrene M				
Analysis Date:	5/4/01			
Benzene		0.002	< 0.002	mg/Kg
Toluene		0.005	< 0.005	mg/Kg
Ethyl Benzene		0.005	< 0.005	mg/Kg
Xylenes (total)		0.005	< 0.005	mg/Kg
Styrene		0.005	< 0.005	mg/Kg
Polynuclear Aron	natic Hydrocarbons	s Method 8270C		
Preparation Date:	5/4/01			
Analysis Date:	5/5/01			
Naphthalene		0.025	< 0.025	mg/Kg
Acenapthylene		0.025	< 0.025	mg/Kg
Acenaphthene		0.025	< 0.025	mg/Kg
Fluorene		0.025	< 0.025	mg/Kg
Phenanthrene		0.025	< 0.025	mg/Kg
Anthracene		0.025	< 0.025	mg/Kg
Fluoranthene		0.025	< 0.025	mg/Kg
Pyrene		0.025	< 0.025	mg/Kg
Chrysene		0.025	< 0.025	mg/Kg
Benzo[a]anthracene	e	0.025	< 0.025	mg/Kg
Benzo[b]fluoranthe	ene	0.025	< 0.025	mg/Kg
Benzo[k]fluoranthe	ene	0.025	< 0.025	mg/Kg
Benzo[a]pyrene		0.025	< 0.025	mg/Kg
Indeno[1,2,3-cd]py	rene	0.025	< 0.025	mg/Kg
Dibenz[a,h]anthrac	ene	0.025	< 0.025	mg/Kg
Benzo[g,h,i]peryler	ne	0.025	< 0.025	mg/Kg

Analytical Report

Client:

Burns & McDonnell

Project ID:

27194-4.07, Peoples-Rogers Park Main & East

Date Received: 5/3/01

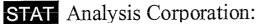
Sample Number:

RPM-SB32-003

Date Taken: 5/2/01

CTAT Drainet No.

Kr WI-3D.52-005


Time Taken: 1120

STAT Project No.: 701817 STAT Sample No.: 917050

Date Reported: 5/7/01

Analyte	Detection Limit	Result	Units	Date Analyzed	Method
Solids, Total		81.71	%	5/4/01	160.3
Total Cyanide	0.25	< 0.25	mg/Kg	5/4/01	9010B/9014
RCRA Metals					
Arsenic	0.050	8.10	mg/Kg	5/6/01	6020
Barium	0.500	42.5	mg/Kg	5/6/01	6020
Cadmium	0.500	< 0.500	mg/Kg	5/6/01	6020
Chromium	0.500	22.6	mg/Kg	5/6/01	6020
Lead	0.500	13.5	mg/Kg	5/6/01	6020
Mercury	0.040	< 0.040	mg/Kg	5/7/01	7471A
Selenium	1.00	< 1.00 UJ	mg/Kg	5/6/01	6020
Silver	0.500	< 0.500	mg/Kg	5/6/01	6020

UJ: Nondetect estimated value. Poor LCS recovery, KART

Analytical Report

Client:

Burns & McDonnell

Project ID:

27194-4.07, Peoples-Rogers Park Main & East

Date Received: 5/3/01

Sample Number:

RPM-SB33-001

Date Taken: 5/2/01

STAT Project No.: 701817 STAT Sample No.: 917034

Time Taken: 0830 Date Reported: 5/7/01

Analyte	Detection Limit	Result	Units
Solids, Total		85.32	%
BTEX/Styrene Method 5035/8260B Analysis Date: 5/6/01			
Benzene	0.002	0.002	mg/Kg
Toluene	0.005	< 0.005	mg/Kg
Ethyl Benzene	0.005	< 0.005	mg/Kg
Xylenes (total)	0.005	< 0.005	mg/Kg
Styrene	0.005	< 0.005	mg/Kg

Dolynuclear Arom	natic Hydrocarbons M	ethod 8270C		
Preparation Date:	5/4/01			
Analysis Date:	5/4/01			
Naphthalene		0.025	0.122	mg/Kg
Acenapthylene		0.025	0.030	mg/Kg
Acenaphthene		0.025	0.070	mg/Kg
Fluorene		0.025	0.098	mg/Kg
Phenanthrene		0.025	0.306	mg/Kg
Anthracene		0.025	0.086	mg/Kg
Fluoranthene		0.025	0.079	mg/Kg
Pyrene		0.025	0.101	mg/Kg
Chrysene		0.025	0.065	mg/Kg
Benzo[a]anthracene	e	0.025	0.057	mg/Kg
Benzo[b]fluoranthe	ene	0.025	0.026	mg/Kg
Benzo[k]fluoranthene		0.025	0.036	mg/Kg
Benzo[a]pyrene		0.025	0.049°	mg/Kg
Indeno[1,2,3-cd]py	rene	0.025	0.026	mg/Kg
Dibenz[a,h]anthracene		0.025	< 0.025	mg/Kg
Benzo[g,h,i]peryler	ne	0.025	0.029	mg/Kg

STAT Analysis Corporation:

2201 West Campbell Park Drive, Chicago, Illinois 60612-3547 Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

Analytical Report

Client:

Burns & McDonnell

Project ID:

27194-4.07, Peoples-Rogers Park Main & East

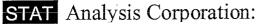
Date Received: 5/3/01

Sample Number:

RPM-SB33-001

Date Taken: 5/2/01

STAT Project No.: 701817


Time Taken: 0830

STAT Sample No.: 917034

Date Reported: 5/7/01

Analyte	Detection Limit	Result	Units	Date Analyzed	Method
Solids, Total		85.32	%	5/4/01	160.3
Total Cyanide	0.25	< 0.25	mg/Kg	5/4/01	9010B/9014
RCRA Metals					
Arsenic	0.050	5.02	mg/Kg	5/6/01	6020
Barium	0.500	59.3	mg/Kg	5/6/01	6020
Cadmium	0.500	< 0.500	mg/Kg	5/6/01	6020
Chromium	0.500	14.2	mg/Kg	5/6/01	6020
Lead	0.500	179	mg/Kg	5/6/01	6020
Mercury	0.040	< 0.040	mg/Kg	5/7/01	7471A
Selenium	1.00	< 1.00 UJ	mg/Kg	5/6/01	6020
Silver	0.500	0.512	mg/Kg	5/6/01	6020

UJ: Nondetect estimated value. Poor LCS recovery. VAI

Analytical Report

Client:

Burns & McDonnell

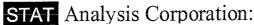
Project ID:

27194-4.07, Peoples-Rogers Park Main & East

Date Received: 5/3/01

Sample Number:

RPM-SB33-002


Date Taken: 5/2/01

STAT Project No.: 701817

Time Taken: 0835

STAT Sample No.: 917035

Analyte	Detection Limit	Result	Units
Solids, Total		86.05	%
BTEX/Styrene Method 5035/8260B			
Analysis Date: 5/6/01			
Benzene	0.002	0.008	mg/Kg
Toluene	0.005	< 0.005	mg/Kg
Ethyl Benzene	0.005	< 0.005	mg/Kg
Xylenes (total)	0.005	0.009	mg/Kg
Styrene	0.005	< 0.005	mg/Kg
Polynuclear Aromatic Hydrocarbons	Method 8270C		
Preparation Date: 5/4/01	Niction 02/0C		
Analysis Date: 5/4/01			÷
	0.005	0.122	/1/
Naphthalene	0.025	0.132	mg/Kg
Acenapthylene	0.025	< 0.025 < 0.025	mg/Kg
Acenaphthene	0.025		mg/Kg
Fluorene	0.025	< 0.025	mg/Kg
Phenanthrene	0.025	0.083	mg/Kg
Anthracene	0.025	< 0.025	mg/Kg
Fluoranthene	0.025	0.044 0.055	mg/Kg
Pyrene	0.025 0.025	0.033	mg/Kg mg/Kg
Chrysene	0.025	0.037	mg/Kg mg/Kg
Benzo[a]anthracene	0.025	0.032	mg/Kg mg/Kg
Benzo[b]fluoranthene	0.025	< 0.025	mg/Kg mg/Kg
Benzo[k]fluoranthene	0.025	0.023	mg/Kg mg/Kg
Benzo[a]pyrene	0.025	< 0.030	mg/Kg
Indeno[1,2,3-cd]pyrene	0.025	< 0.025	mg/Kg
Dibenz[a,h]anthracene	0.025	< 0.025	mg/Kg mg/Kg
Benzo[g,h,i]perylene	0.023	~ 0.02 <i>3</i>	mg/mg

Analytical Report

Client:

Burns & McDonnell

Project ID:

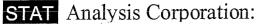
27194-4.07, Peoples-Rogers Park Main & East

Date Received: 5/3/01

Sample Number:

RPM-SB33-002

Date Taken: 5/2/01


Time Taken: 0835

STAT Project No.: 701817 STAT Sample No.: 917035

Date Reported: 5/16/01

Analyte	Detection Limit	Result	Units	Date Analyzed	Method
Solids, Total		86.05	%	5/4/01	160.3
Total Cyanide	0.25	< 0.25	mg/Kg	5/4/01	9010B/9014
RCRA Metals					
Arsenic	0.050	4.20	mg/Kg	5/6/01	6020
Barium	0.500	39.0	mg/Kg	5/6/01	6020
Cadmium	0.500	< 0.500	mg/Kg	5/6/01	6020
Chromium	0.500	11.9	mg/Kg	5/6/01	6020
Lead	0.500	240	mg/Kg	5/6/01	6020
Mercury	0.040	< 0.040	mg/Kg	5/7/01	7471A
Selenium	1.00	< 1.00 UJ	mg/Kg	5/6/01	6020
Silver	0.500	< 0.500	mg/Kg	5/6/01	6020
SPLP Lead	0.005	< 0.005	mg/L	5/10/01	1312/6020

UJ: Nondetect estimated value. Poor LCS recovery.

Analytical Report

Client:

Burns & McDonnell

Project ID:

27194-4.07, Peoples-Rogers Park Main & East

Date Received: 5/3/01

Sample Number:

RPM-SB33-003

Date Taken: 5/2/01

STAT Project No.: 701817

Time Taken: 0840

STAT Sample No.: 917036

Analyte	Detection Limit	Result	Units
Solids, Total		83.63	%
BTEX/Styrene Method 5035/8260B			
Analysis Date: 5/6/01			
Benzene	0.002	< 0.002	mg/Kg
Toluene	0.005	< 0.005	mg/Kg
Ethyl Benzene	0.005	< 0.005	mg/Kg
Xylenes (total)	0.005	< 0.005	mg/Kg
Styrene	0.005	< 0.005	mg/Kg
Polynuclear Aromatic Hydrocarbon	s Mathad 9270C		
Preparation Date: 5/4/01	S Memou 6270C		
Analysis Date: 5/4/01			
J		0.005	/Tr
Naphthalene	0.025	< 0.025	mg/Kg
Acenapthylene	0.025	< 0.025	mg/Kg
Acenaphthene	0.025	< 0.025	mg/Kg
Fluorene	0.025	< 0.025	mg/Kg
Phenanthrene	0.025	< 0.025	mg/Kg
Anthracene	0.025	< 0.025	mg/Kg
Fluoranthene	0.025	< 0.025	mg/Kg
Pyrene	0.025	< 0.025	mg/Kg
Chrysene	0.025	< 0.025	mg/Kg
Benzo[a]anthracene	0.025	< 0.025	mg/Kg
Benzo[b]fluoranthene	0.025	< 0.025	mg/Kg
Benzo[k]fluoranthene	0.025	< 0.025	mg/Kg
Benzo[a]pyrene	0.025	< 0.025	mg/Kg
Indeno[1,2,3-cd]pyrene	0.025	< 0.025	mg/Kg
Dibenz[a,h]anthracene	0.025	< 0.025	mg/Kg
Benzo[g,h,i]perylene	0.025	< 0.025	mg/Kg

STAT Analysis Corporation:

2201 West Campbell Park Drive, Chicago, Illinois 60612-3547 Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

Analytical Report

Client:

Burns & McDonnell

Project ID:

27194-4.07, Peoples-Rogers Park Main & East

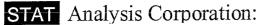
Date Received: 5/3/01

Sample Number:

RPM-SB33-003

Date Taken: 5/2/01

STAT Project No.: 701817


Time Taken: 0840

STAT Sample No.: 917036

Date Reported: 5/7/01

Analyte	Detection Limit	Result	Units	Date Analyzed	Method
Solids, Total		83.63	%	5/4/01	160.3
Total Cyanide	0.25	< 0.25	mg/Kg	5/4/01	9010B/9014
RCRA Metals					
Arsenic	0.050	9.92	mg/Kg	5/6/01	6020
Barium	0.500	52.0	mg/Kg	5/6/01	6020
Cadmium	0.500	< 0.500	mg/Kg	5/6/01	6020
Chromium	0.500	14.0	mg/Kg	5/6/01	6020
Lead	0.500	12.4	mg/Kg	5/6/01	6020
Mercury	0.040	< 0.040	mg/Kg	5/7/01	7471A
Selenium	1.00	< 1.00 UJ	mg/Kg	5/6/01	6020
Silver	0.500	< 0.500	mg/Kg	5/6/01	6020

UJ: Nondetect estimated value. Poor LCS recovery. West

Analytical Report

Client:

Burns & McDonnell

Project ID:

27194-4.07, Peoples-Rogers Park Main & East

Date Received: 5/3/01

Sample Number:

RPM-SB33-004

Date Taken: 5/2/01

STAT Project No.: 701817

Time Taken: 0845

STAT Sample No.: 917037

Analyte	Detection Limit	Result	Units		
Solids, Total		84.06	%		
BTEX/Styrene Method 5035/8260B Analysis Date: 5/6/01	•				
Benzene	0.050	0.093	mg/Kg		
Toluene	0.050	0.132	mg/Kg		
Ethyl Benzene	0.050	2.15	mg/Kg		
Xylenes (total)	0.050	4.54	mg/Kg		
Styrene	0.050	< 0.050	mg/Kg		
Polynuclear Aromatic Hydrocarbons Method 8270C					
Preparation Date: 5/4/01					
Analysis Date: 5/4/01					
Naphthalene	0.025	< 0.025	mg/Kg		
Acenapthylene	0.025	< 0.025	mg/Kg		
Acenaphthene	0.025	< 0.025	mg/Kg		
Fluorene	0.025	< 0.025	mg/Kg		
Phenanthrene	0.025	< 0.025	mg/Kg		
Anthracene	0.025	< 0.025	mg/Kg		
Fluoranthene	0.025	< 0.025	mg/Kg		
Pyrene	0.025	< 0.025	mg/Kg		
Chrysene	0.025	< 0.025	mg/Kg		
Benzo[a]anthracene	0.025	< 0.025	mg/Kg		
Benzo[b]fluoranthene	0.025	< 0.025	mg/Kg		
Benzo[k]fluoranthene	0.025	< 0.025	mg/Kg		
Benzo[a]pyrene	0.025	< 0.025	mg/Kg		
Indeno[1,2,3-cd]pyrene	0.025	< 0.025	mg/Kg		
Dibenz[a,h]anthracene	0.025	< 0.025	mg/Kg		
Benzo[g,h,i]perylene	0.025	< 0.025	mg/Kg		

Analytical Report

Client:

Burns & McDonnell

Project ID:

27194-4.07, Peoples-Rogers Park Main & East

Date Received: 5/3/01

Sample Number:

RPM-SB33-004

Date Taken: 5/2/01

Time Taken: 0845

STAT Project No.: 701817

STAT Sample No.: 917037

Date Reported: 5/7/01

Analyte	Detection Limit	Result	Units	Date Analyzed	Method
Solids, Total		84.06	%	5/4/01	160.3
Total Cyanide	0.25	< 0.25	mg/Kg	5/4/01	9010B/9014
RCRA Metals					
Arsenic	0.050	6.74	mg/Kg	5/6/01	6020
Barium	0.500	46.7	mg/Kg	5/6/01	6020
Cadmium	0.500	< 0.500	mg/Kg	5/6/01	6020
Chromium	0.500	18.8	mg/Kg	5/6/01	6020
Lead	0.500	91.1	mg/Kg	5/6/01	6020
Mercury	0.040	< 0.040	mg/Kg	5/7/01	7471A
Selenium	1.00	< 1.00 UJ	mg/Kg	5/6/01	6020
Silver	0.500	< 0.500	mg/Kg	5/6/01	6020

UJ: Nondetect estimated value. Poor LCS recovery. Wil

2201 West Campbell Park Drive, Chicago, Illinois 60612-3547

Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

Analytical Report

Client:

Burns & McDonnell

Project ID:

27194-4.07, Peoples-Rogers Park Main & East

Date Received: 5/4/01

Sample Number:

RPM-SB34-001

Date Taken: 5/3/01 Time Taken: 0850

STAT Project No.: 701824 STAT Sample No.: 917101

Date Reported: 5/16/01

Analyte	Detection Limit	Result	Units
Solids, Total		80.04	%
BTEX/Styrene Method 5035/8260B			
Analysis Date: 5/11/01			
Benzene	0.002	0.006 ブ	mg/Kg
Toluene	0.005	< 0.005	mg/Kg
Ethyl Benzene	0.005	< 0.005	mg/Kg
Xylenes (total)	0.005	< 0.005	mg/Kg
Styrene	0.005	< 0.005	mg/Kg
Polynuclear Aromatic Hydrocarbons	Method 8270C		
Preparation Date: 5/7/01	y Memod 02700		
Analysis Date: 5/8/01			
,	0.025	< 0.025	
Naphthalene	0.025	< 0.025	mg/Kg
Acenapthylene	0.025	< 0.025	mg/Kg
Acenaphthene	0.025	< 0.025	mg/Kg
Fluorene	0.025	< 0.025	mg/Kg
Phenanthrene	0.025	< 0.025	mg/Kg
Anthracene	0.025	< 0.025	mg/Kg
Fluoranthene	0.025	< 0.025	mg/Kg
Pyrene	0.025	< 0.025	mg/Kg
Chrysene	0.025	< 0.025	mg/Kg
Benzo[a]anthracene	0.025	< 0.025	mg/Kg
Benzo[b]fluoranthene	0.025	< 0.025	mg/Kg
Benzo[k]fluoranthene	0.025	< 0.025	mg/Kg
Benzo[a]pyrene	0.025	< 0.025	mg/Kg
Indeno[1,2,3-cd]pyrene	0.025	< 0.025	mg/Kg
Dibenz[a,h]anthracene	0.025	< 0.025	mg/Kg
Benzo[g,h,i]perylene	0.025	< 0.025	mg/Kg

J: Estimated Value. Poor Surryake recovery. EAR

STAT Analysis Corporation:

2201 West Campbell Park Drive, Chicago, Illinois 60612-3547 Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

Analytical Report

Client:

Burns & McDonnell

Project ID:

27194-4.07, Peoples-Rogers Park Main & East

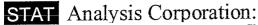
Date Received: 5/4/01

Sample Number:

RPM-SB34-001

Date Taken: 5/3/01

Time Taken: 0850


STAT Project No.: 701824

STAT Sample No.: 917101

Date Reported: 5/16/01

Analyte	Detection Limit	Result	Units	Date Analyzed	Method
Solids, Total		80.04	%	5/7/01	160.3
Total Cyanide	0.25	< 0.25	mg/Kg	5/4/01	9010B/9014
RCRA Metals					
Arsenic	0.050	8.62	mg/Kg	5/10/01	6020
Barium	0.500	54.5	mg/Kg	5/10/01	6020
Cadmium	0.500	< 0.500	mg/Kg	5/10/01	6020
Chromium	0.500	22.5	mg/Kg	5/10/01	6020
Lead	0.500	15.4	mg/Kg	5/10/01	6020
Mercury	0.040	< 0.040	mg/Kg	5/11/01	7471A
Selenium	1.00	< 1.00 UJ	mg/Kg	5/10/01	6020
Silver	0.500	< 0.500	mg/Kg	5/10/01	6020

UJ - Mondetect estimated value. Poor LCS recovery, 14th

Analytical Report

Client:

Burns & McDonnell

Project ID:

27194-4.07, Peoples Gas-Rogers Park

Sample Number:

RPM-SB39-001

STAT Project No.: 701830 STAT Sample No.: 917189

Date Received: 5/4/01

Date Taken: 5/4/01

Time Taken: 0850

Analyte	Detection Limit	Result	Units
Solids, Total		84.98	%
Volatile Organic Compounds Method	d 5035/8260B		
Analysis Date: 5/16/01			
Acetone	0.025	0.626	E mg/Kg
Benzene	0.005	< 0.005	mg/Kg
Bromodichloromethane	0.005	< 0.005	mg/Kg
Bromoform	0.005	< 0.005	mg/Kg
Bromomethane	0.010	< 0.010	mg/Kg
2-Butanone	0.010	0.077	mg/Kg
Carbon Disulfide	0.005	0.005	mg/Kg
Carbon Tetrachloride	0.005	< 0.005	mg/Kg
Chlorobenzene	0.005	< 0.005	mg/Kg
Chlorodibromomethane	0.005	< 0.005	mg/Kg
Chloroethane	0.010	< 0.010	mg/Kg
Chloroform	0.005	< 0.005	mg/Kg
Chloromethane	0.010	< 0.010	mg/Kg
1,1-Dichloroethane	0.005	< 0.005	mg/Kg
1,2-Dichloroethane	0.005	< 0.005	mg/Kg
1,1-Dichloroethene	0.005	< 0.005	mg/Kg
cis-1,2-Dichloroethene	0.005	< 0.005	mg/Kg
trans-1,2-Dichloroethene	0.005	< 0.005	mg/Kg
1,2-Dichloropropane	0.005	< 0.005	mg/Kg
cis-1,3-Dichloropropene	0.005	< 0.005	mg/Kg
trans-1,3-Dichloropropene	0.005	< 0.005	mg/Kg
Ethyl Benzene	0.005	< 0.005	mg/Kg
2-Hexanone	0.010	< 0.010	mg/Kg
4-Methyl-2-pentanone	0.010	< 0.010	mg/Kg
Methylene Chloride	0.010	< 0.010	mg/Kg
Styrene	0.005	< 0.005	mg/Kg
1,1,2,2-Tetrachloroethane	0.005	< 0.005	mg/Kg
Tetrachloroethene	0.005	< 0.005	mg/Kg
Toluene	0.005	< 0.005	mg/Kg

2201 West Campbell Park Drive, Chicago, Illinois 60612-3547

Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

Analytical Report

Client:

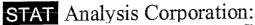
Burns & McDonnell

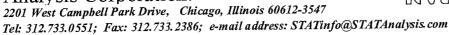
Project ID:

27194-4.07, Peoples Gas-Rogers Park

RPM-SB39-001 Sample Number:

STAT Project No.: 701830


STAT Sample No.: 917189


Date Received: 5/4/01

Date Taken: 5/4/01

Time Taken: 0850

Analyte	Detection Limit	Result	Units
1,1,1-Trichloroethane	0.005	< 0.005	mg/Kg
1,1,2-Trichloroethane	0.005	< 0.005	mg/Kg
Trichloroethene	0.005	< 0.005	mg/Kg
Vinyl Acetate	0.010	< 0.010	mg/Kg
Vinyl Chloride	0.010	< 0.010	mg/Kg
Xylenes (total)	0.005	0.014	mg/Kg
Polynuclear Aromatic Hydrocarbons	Method 8270C		
Preparation Date: 5/9/01			
Analysis Date: 5/11/01			
Naphthalene	0.025	< 0.025	mg/Kg
Acenapthylene	0.025	< 0.025	mg/Kg
Acenaphthene	0.025	< 0.025	mg/Kg
Fluorene	0.025	< 0.025	mg/Kg
Phenanthrene	0.025	< 0.025	mg/Kg
Anthracene	0.025	< 0.025	mg/Kg
Fluoranthene	0.025	0.038	mg/Kg
Pyrene	0.025	0.029	mg/Kg
Chrysene	0.025	0.027	mg/Kg
Benzo[a]anthracene	0.025	< 0.025	mg/Kg
Benzo[b]fluoranthene	0.025	< 0.025	mg/Kg
Benzo[k]fluoranthene	0.025	< 0.025	mg/Kg
Benzo[a]pyrene	0.025	< 0.025	mg/Kg
Indeno[1,2,3-cd]pyrene	0.025	< 0.025	mg/Kg
Dibenz[a,h]anthracene	0.025	< 0.025	mg/Kg
Benzo[g,h,i]perylene	0.025	< 0.025	mg/Kg

Analytical Report

Client:

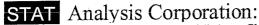
Burns & McDonnell

Project ID:

27194-4.07, Peoples Gas-Rogers Park

RPM-SB39-001

Sample Number: STAT Project No.: 701830


STAT Sample No.: 917189

Time Taken: 0850 Date Reported: 5/16/01

Date Taken: 5/4/01

Date Received: 5/4/01

Analyte	Detection Limit	Result	Units	Date Analyzed	Method
Solids, Total		84.98	%	5/8/01	160.3
Total Cyanide	0.25	< 0.25	mg/Kg	5/8/01	9010B/9014
RCRA Metals					
Arsenic	0.050	16.7	mg/Kg	5/13/01	6020
Barium	0.500	85.5	mg/Kg	5/13/01	6020
Cadmium	0.500	< 0.500	mg/Kg	5/13/01	6020
Chromium	0.500	20.7	mg/Kg	5/13/01	6020
Lead	0.500	27.9	mg/Kg	5/13/01	6020
Mercury	0.040	< 0.040	mg/Kg	5/11/01	7471A
Selenium	1.00	< 1.00	mg/Kg	5/13/01	6020
Silver	0.500	< 0.500	mg/Kg	5/13/01	6020

2201 West Campbell Park Drive, Chicago, Illinois 60612-3547

Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

Analytical Report

Client:

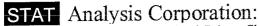
Burns & McDonnell

Project ID:

27194-4.07, Peoples Gas-Rogers Park

Sample Number:

RPM-SB39-002


STAT Project No.: 701830

STAT Sample No.: 917190

Date Taken: 5/4/01 Time Taken: 0855

Date Received: 5/4/01

Solids, Total Tota	Analyte	Detection Limit	Result	Units
Acetone 0.025 < 0.025	Solids, Total		79.65	%
Acetone 0.025 < 0.025 mg/Kg Benzene 0.005 < 0.005	Volatile Organic Compounds Metho	d 5035/8260B		
Renzene 0.005 < 0.005 mg/Kg				
Bromodichloromethane 0.005 < 0.005 mg/Kg Bromoform 0.005 < 0.005	Acetone	0.025	< 0.025	mg/Kg
Bromoform 0.005 < 0.005 mg/Kg Bromomethane 0.010 < 0.010	Benzene	0.005	< 0.005	mg/Kg
Bromomethane 0.010 < 0.010	Bromodichloromethane	0.005	< 0.005	mg/Kg
2-Butanone	Bromoform	0.005	< 0.005	mg/Kg
Carbon Disulfide 0.005 < 0.005	Bromomethane	0.010	< 0.010	
Carbon Tetrachloride 0.005 < 0.005	2-Butanone	0.010	< 0.010	mg/Kg
Chlorobenzene 0.005 < 0.005 mg/Kg Chlorodibromomethane 0.005 < 0.005	Carbon Disulfide	0.005	< 0.005	
Chlorodibromomethane 0.005 < 0.005 mg/Kg Chloroethane 0.010 < 0.010	Carbon Tetrachloride	0.005	< 0.005	mg/Kg
Chloroethane 0.010 < 0.010 mg/Kg Chloroform 0.005 < 0.005	Chlorobenzene	0.005	< 0.005	mg/Kg
Chloroform 0.005 < 0.005 mg/Kg Chloromethane 0.010 < 0.010	Chlorodibromomethane	0.005	< 0.005	mg/Kg
Chloromethane 0.010 < 0.010 mg/Kg 1,1-Dichloroethane 0.005 < 0.005	Chloroethane	0.010	< 0.010	mg/Kg
1,1-Dichloroethane 0.005 < 0.005	Chloroform	0.005	< 0.005	mg/Kg
1,2-Dichloroethane 0.005 < 0.005	Chloromethane	0.010	< 0.010	mg/Kg
1,1-Dichloroethene 0.005 < 0.005	1,1-Dichloroethane	0.005	< 0.005	
cis-1,2-Dichloroethene 0.005 < 0.005		0.005	< 0.005	mg/Kg
trans-1,2-Dichloroethene 0.005 < 0.005	1,1-Dichloroethene	0.005	< 0.005	mg/Kg
1,2-Dichloropropane 0.005 < 0.005	cis-1,2-Dichloroethene	0.005	< 0.005	
cis-1,3-Dichloropropene 0.005 < 0.005	trans-1,2-Dichloroethene	0.005		mg/Kg
trans-1,3-Dichloropropene 0.005 < 0.005	1,2-Dichloropropane	0.005	< 0.005	mg/Kg
Ethyl Benzene 0.005 < 0.005	cis-1,3-Dichloropropene	0.005	< 0.005	mg/Kg
2-Hexanone 0.010 < 0.010	trans-1,3-Dichloropropene	0.005	< 0.005	
2-Hexanone 0.010 < 0.010	Ethyl Benzene	0.005	< 0.005	mg/Kg
Methylene Chloride 0.010 < 0.010 mg/Kg Styrene 0.005 < 0.005		0.010	< 0.010	mg/Kg
Styrene 0.005 < 0.005 mg/Kg 1,1,2,2-Tetrachloroethane 0.005 < 0.005	4-Methyl-2-pentanone	0.010	< 0.010	mg/Kg
1,1,2,2-Tetrachloroethane 0.005 < 0.005 mg/Kg Tetrachloroethene 0.005 < 0.005 mg/Kg	Methylene Chloride	0.010	< 0.010	mg/Kg
Tetrachloroethene 0.005 < 0.005 mg/Kg	Styrene	0.005	< 0.005	
Tetrachloroethene 0.005 < 0.005 mg/Kg	•	0.005	< 0.005	
Toluene $0.005 < 0.005 $ mg/Kg	Tetrachloroethene	0.005	< 0.005	mg/Kg
Totalic	Toluene	0.005	< 0.005	mg/Kg

Analytical Report

Client:

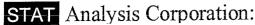
Burns & McDonnell

Project ID:

27194-4.07, Peoples Gas-Rogers Park

Sample Number:

RPM-SB39-002


STAT Project No.: 701830 STAT Sample No.: 917190

Date Received: 5/4/01

Date Taken: 5/4/01

Time Taken: 0855

Analyte	Detection Limit	Result	Units
1,1,1-Trichloroethane	0.005	< 0.005	mg/Kg
1,1,2-Trichloroethane	0.005	< 0.005	mg/Kg
Trichloroethene	0.005	< 0.005	mg/Kg
Vinyl Acetate	0.010	< 0.010	mg/Kg
Vinyl Chloride	0.010	< 0.010	mg/Kg
Xylenes (total)	0.005	< 0.005	mg/Kg
Polynuclear Aromatic Hydrocarbon	s Method 8270C		
Preparation Date: 5/9/01			
Analysis Date: 5/10/01			
Naphthalene	0.025	< 0.025	mg/Kg
Acenapthylene	0.025	< 0.025	mg/Kg
Acenaphthene	0.025	< 0.025	mg/Kg
Fluorene	0.025	< 0.025	mg/Kg
Phenanthrene	0.025	< 0.025	mg/Kg
Anthracene	0.025	< 0.025	mg/Kg
Fluoranthene	0.025	< 0.025	mg/Kg
Pyrene	0.025	< 0.025	mg/Kg
Chrysene	0.025	< 0.025	mg/Kg
Benzo[a]anthracene	0.025	< 0.025	mg/Kg
Benzo[b]fluoranthene	0.025	< 0.025	mg/Kg
Benzo[k]fluoranthene	0.025	< 0.025	mg/Kg
Benzo[a]pyrene	0.025	< 0.025	mg/Kg
Indeno[1,2,3-cd]pyrene	0.025	< 0.025	mg/Kg
Dibenz[a,h]anthracene	0.025	< 0.025	mg/Kg
Benzo[g,h,i]perylene	0.025	< 0.025	mg/Kg

Analytical Report

Client:

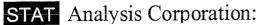
Burns & McDonnell

Project ID:

27194-4.07, Peoples Gas-Rogers Park

RPM-SB39-002

Sample Number: STAT Project No.: 701830


STAT Sample No.: 917190

Date Received: 5/4/01

Date Taken: 5/4/01

Time Taken: 0855

Analyte	Detection Limit	Result	Units	Date Analyzed	Method
Solids, Total		79.65	%	5/8/01	160.3
Total Cyanide	0.25	< 0.25	mg/Kg	5/8/01	9010B/9014
RCRA Metals					
Arsenic	0.050	2.68	mg/Kg	5/13/01	6020
Barium	0.500	58.7	mg/Kg	5/13/01	6020
Cadmium	0.500	< 0.500	mg/Kg	5/13/01	6020
Chromium	0.500	21.3	mg/Kg	5/13/01	6020
Lead	0.500	15.9	mg/Kg	5/13/01	6020
Mercury	0.040	< 0.040	mg/Kg	5/11/01	7471A
Selenium	1.00	< 1.00	mg/Kg	5/13/01	6020
Silver	0.500	< 0.500	· mg/Kg	5/13/01	6020

2201 West Campbell Park Drive, Chicago, Illinois 60612-3547

Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

Analytical Report

Client:

Burns & McDonnell

Project ID:

27194-4.07, Peoples Gas-Rogers Park

Sample Number:

RPM-SB39-003

STAT Project No.: 701830

STAT Sample No.: 917191

Date Received: 5/4/01

Date Taken: 5/4/01

Time Taken: 0900

Analyte	Detection Limit	Result	Units
Solids, Total		82.07	%
Volatile Organic Compounds Metho	d 5035/8260B		
Analysis Date: 5/16/01			
Acetone	0.025	0.131	mg/Kg
Benzene	0.005	< 0.005	mg/Kg
Bromodichloromethane	0.005	< 0.005	mg/Kg
Bromoform	0.005	< 0.005	mg/Kg
Bromomethane	0.010	< 0.010	mg/Kg
2-Butanone	0.010	0.016	mg/Kg
Carbon Disulfide	0.005	0.059	mg/Kg
Carbon Tetrachloride	0.005	< 0.005	mg/Kg
Chlorobenzene	0.005	< 0.005	mg/Kg
Chlorodibromomethane	0.005	< 0.005	mg/Kg
Chloroethane	0.010	< 0.010	mg/Kg
Chloroform	0.005	< 0.005	mg/Kg
Chloromethane	0.010	< 0.010	mg/Kg
1,1-Dichloroethane	0.005	< 0.005	mg/Kg
1,2-Dichloroethane	0.005	< 0.005	mg/Kg
1,1-Dichloroethene	0.005	< 0.005	mg/Kg
cis-1,2-Dichloroethene	0.005	0.444	E mg/Kg
trans-1,2-Dichloroethene	0.005	< 0.005	mg/Kg
1,2-Dichloropropane	0.005	< 0.005	mg/Kg
cis-1,3-Dichloropropene	0.005	< 0.005	mg/Kg
trans-1,3-Dichloropropene	0.005	< 0.005	mg/Kg
Ethyl Benzene	0.005	< 0.005	mg/Kg
2-Hexanone	0.010	< 0.010	mg/Kg
4-Methyl-2-pentanone	0.010	< 0.010	mg/Kg
Methylene Chloride	0.010	< 0.010	mg/Kg
Styrene	0.005	< 0.005	mg/Kg
1,1,2,2-Tetrachloroethane	0.005	< 0.005	mg/Kg
Tetrachloroethene	0.005	< 0.005	mg/Kg
Toluene	0.005	< 0.005	mg/Kg

2201 West Campbell Park Drive, Chicago, Illinois 60612-3547

Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

Analytical Report

Client:

Burns & McDonnell

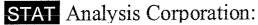
Project ID:

27194-4.07, Peoples Gas-Rogers Park

Sample Number:

RPM-SB39-003

STAT Project No.: 701830


STAT Sample No.: 917191

Date Received: 5/4/01

Date Taken: 5/4/01 Time Taken: 0900

Analyte	Detection Limit	Result	Units		
1,1,1-Trichloroethane	0.005	< 0.005	mg/Kg		
1,1,2-Trichloroethane	0.005	< 0.005	mg/Kg		
Trichloroethene	0.005	0.024	mg/Kg		
Vinyl Acetate	0.010	< 0.010	mg/Kg		
Vinyl Chloride	0.010	0.030	mg/Kg		
Xylenes (total)	0.005	< 0.005	mg/Kg		
Polynuclear Aromatic Hydrocarbons Method 8270C					
Preparation Date: 5/9/01		,			

Dolymuelear Arom	natic Hydrocarb	ons Method 8270C		
Preparation Date:	5/9/01	ons Method 02700		
Analysis Date:	5/10/01			
Naphthalene		0.025	< 0.025	mg/Kg
Acenapthylene		0.025	< 0.025	mg/Kg
Acenaphthene		0.025	< 0.025	mg/Kg
Fluorene		0.025	< 0.025	mg/Kg
Phenanthrene		0.025	< 0.025	mg/Kg
Anthracene		0.025	< 0.025	mg/Kg
Fluoranthene		0.025	< 0.025	mg/Kg
Pyrene		0.025	< 0.025	mg/Kg
Chrysene	•	0.025	< 0.025	mg/Kg
Benzo[a]anthracen	e	0.025	< 0.025	mg/Kg
Benzo[b]fluoranthe	ene	0.025	< 0.025	mg/Kg
Benzo[k]fluoranthe	ene	0.025	< 0.025	mg/Kg
Benzo[a]pyrene		0.025	< 0.025	mg/Kg
Indeno[1,2,3-cd]py	rene	0.025	< 0.025	mg/Kg
Dibenz[a,h]anthrac	ene	0.025	< 0.025	mg/Kg
Benzo[g,h,i]peryler	ne	0.025	< 0.025	mg/Kg

Analytical Report

Client:

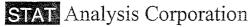
Burns & McDonnell

Project ID:

27194-4.07, Peoples Gas-Rogers Park

RPM-SB39-003

Sample Number: STAT Project No.: 701830


STAT Sample No.: 917191

Date Received: 5/4/01

Date Taken: 5/4/01

Time Taken: 0900

Analyte	Detection Limit	Result	Units	Date Analyzed	Method
Solids, Total		82.07	%	5/8/01	160.3
Total Cyanide	0.25	< 0.25	mg/Kg	5/9/01	9010B/9014
RCRA Metals					
Arsenic	0.050	2.54	mg/Kg	5/13/01	6020
Barium	0.500	59.9	mg/Kg	5/13/01	6020
Cadmium	0.500	< 0.500	mg/Kg	5/13/01	6020
Chromium	0.500	20.4	mg/Kg	5/13/01	6020
Lead	0.500	14.1	mg/Kg	5/13/01	6020
Mercury	0.040	< 0.040	mg/Kg	5/11/01	7471A
Selenium	1.00	< 1.00	mg/Kg	5/13/01	6020
Silver	0.500	< 0.500	mg/Kg	5/13/01	6020

2201 West Campbell Park Drive Chicago, Illinois 60612-3547 Tel: 312.733.0551 Fax: 312.733.2386 e-mail address: STATinfo@STATAnalysis.com AIHA accredited 10248, NVLAP accredited 101202-0

Analytical Report

Client:

Burns & McDonnell

Project ID:

27194-4.07, Peoples Gas-Rogers Park Main & East

Date Received:

5/4/01

Sample Number:

1, RPM-SB39-004

Date Taken:

5/4/01

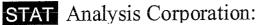
STAT Project No.:

701829

Time Taken:

NA

STAT Sample No.:


917167

Date Reported:

5/15/01

Sample Description: Dark Gray Silty Clay

Test	Method	Value
Moisture Content	ASTM D2216	26.7 %
Wet Soil Density	ASTM D2937	2.24 g/cm ³ (139.8 pcf)
Dry Soil Density	ASTM D2937	1.77 g/cm ³ (110.5 pcf)
Hydraulic Conductivity	ASTM D5084	3.0 x 10 ⁻⁹ cm/sec

Analytical Report

Client:

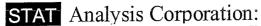
Burns & McDonnell

Project ID:

27194-4.07, Peoples-Rogers Park Main & East

RPM-SB40-001

Sample Number: STAT Project No.: 701824


STAT Sample No.: 917103

Date Received: 5/4/01

Date Taken: 5/3/01

Time Taken: 1050

Analyte	Detection Limit	Result	Units		
Solids, Total		81.33	%		
Volatile Organic Compounds Method 5035/8260B Analysis Date: 5/11/01					
Acetone	0.025	0.265	mg/Kg		
Benzene	0.005	< 0.005	mg/Kg		
Bromodichloromethane	0.005	< 0.005	mg/Kg		
Bromoform	0.005	< 0.005	mg/Kg		
Bromomethane	0.010	< 0.010	mg/Kg		
2-Butanone	0.010	0.029	mg/Kg		
Carbon Disulfide	0.005	< 0.005	mg/Kg		
Carbon Tetrachloride	0.005	< 0.005	mg/Kg		
Chlorobenzene	0.005	< 0.005	mg/Kg		
Chlorodibromomethane	0.005	< 0.005	mg/Kg		
Chloroethane	0.010	< 0.010	mg/Kg		
Chloroform	0.005	< 0.005	mg/Kg		
Chloromethane	0.010	< 0.010	mg/Kg		
1,1-Dichloroethane	0.005	< 0.005	mg/Kg		
1,2-Dichloroethane	0.005	< 0.005	mg/Kg		
1,1-Dichloroethene	0.005	< 0.005	mg/Kg		
cis-1,2-Dichloroethene	0.005	< 0.005	mg/Kg		
trans-1,2-Dichloroethene	0.005	< 0.005	mg/Kg		
1,2-Dichloropropane	0.005	< 0.005	mg/Kg		
cis-1,3-Dichloropropene	0.005	< 0.005	mg/Kg		
trans-1,3-Dichloropropene	0.005	< 0.005	mg/Kg		
Ethyl Benzene	0.005	< 0.005	mg/Kg		
2-Hexanone	0.010	< 0.010	mg/Kg		
4-Methyl-2-pentanone	0.010	< 0.010	mg/Kg		
Methylene Chloride	0.010	< 0.010	mg/Kg		
Styrene	0.005	< 0.005	mg/Kg		
1,1,2,2-Tetrachloroethane	0.005	< 0.005	mg/Kg		
Tetrachloroethene	0.005	< 0.005	mg/Kg		
Toluene	0.005	< 0.005	mg/Kg		

Analytical Report

Client:

Burns & McDonnell

Project ID:

27194-4.07, Peoples-Rogers Park Main & East

Date Received: 5/4/01

Sample Number:

RPM-SB40-001

Date Taken: 5/3/01

STAT Project No.: 701824

Time Taken: 1050

STAT Sample No.: 917103

Analyte	Detection Limit	Result	Units
1,1,1-Trichloroethane	0.005	< 0.005	mg/Kg
1,1,2-Trichloroethane	0.005	< 0.005	mg/Kg
Trichloroethene	0.005	< 0.005	mg/Kg
Vinyl Acetate	0.010	< 0.010	mg/Kg
Vinyl Chloride	0.010	< 0.010	mg/Kg
Xylenes (total)	0.005	< 0.005	mg/Kg
Polynuclear Aromatic Hydrocarbon	s Method 8270C		
Preparation Date: 5/7/01			
Analysis Date: 5/8/01			
Naphthalene	0.025	< 0.025	mg/Kg
Acenapthylene	0.025	< 0.025	mg/Kg
Acenaphthene	0.025	< 0.025	mg/Kg
Fluorene	0.025	< 0.025	mg/Kg
Phenanthrene	0.025	< 0.025	mg/Kg
Anthracene	0.025	< 0.025	mg/Kg
Fluoranthene	0.025	< 0.025	mg/Kg
Pyrene	0.025	< 0.025	mg/Kg
Chrysene	0.025	< 0.025	mg/Kg
Benzo[a]anthracene	0.025	< 0.025	mg/Kg
Benzo[b]fluoranthene	0.025	< 0.025	mg/Kg
Benzo[k]fluoranthene	0.025	< 0.025	mg/Kg
Benzo[a]pyrene	0.025	< 0.025	mg/Kg
Indeno[1,2,3-cd]pyrene	0.025	< 0.025	mg/Kg
Dibenz[a,h]anthracene	0.025	< 0.025	mg/Kg
Benzo[g,h,i]perylene	0.025	< 0.025	mg/Kg

STAT Analysis Corporation:

2201 West Campbell Park Drive, Chicago, Illinois 60612-3547 Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

Analytical Report

Client:

Burns & McDonnell

Project ID:

27194-4.07, Peoples-Rogers Park Main & East

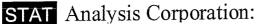
Date Received: 5/4/01

Sample Number:

RPM-SB40-001

Date Taken: 5/3/01

STAT Project No.: 701824


Time Taken: 1050

STAT Sample No.: 917103

Date Reported: 5/16/01

Analyte	Detection Limit	Result	Units	Date Analyzed	Method
Solids, Total		81.33	%	5/7/01	160.3
Total Cyanide	0.25	< 0.25	mg/Kg	5/4/01	9010B/9014
RCRA Metals					
Arsenic	0.050	3.74	mg/Kg	5/10/01	6020
Barium	0.500	54.1	mg/Kg	5/10/01	6020
Cadmium	0.500	< 0.500	mg/Kg	5/10/01	6020
Chromium	0.500	17.5	mg/Kg	5/10/01	6020
Lead	0.500	24.6	mg/Kg	5/10/01	6020
Mercury	0.040	0.101	mg/Kg	5/11/01	7471A
Selenium	1.00	< 1.00 UJ	mg/Kg	5/10/01	6020
Silver	0.500	< 0.500	mg/Kg	5/10/01	6020

UJ: Mondetect estimated value. Foor LCS recoveryend

Analytical Report

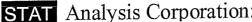
Client:

Burns & McDonnell

Project ID:

27194-4.07, Peoples-Rogers Park Main & East

RPM-SB40-002


Sample Number: STAT Project No.: 701824

STAT Sample No.: 917104

Date Received: 5/4/01

Date Taken: 5/3/01 Time Taken: 1055

Analyte	Detection Limit	Result	Units				
Solids, Total		80.27	%				
Volatile Organic Compounds Metho	Volatile Organic Compounds Method 5035/8260B						
Analysis Date: 5/11/01							
Acetone	0.025	0.107	mg/Kg				
Benzene	0.005	< 0.005	mg/Kg				
Bromodichloromethane	0.005	< 0.005	mg/Kg				
Bromoform	0.005	< 0.005	mg/Kg				
Bromomethane	0.010	< 0.010	mg/Kg				
2-Butanone	0.010	0.020	mg/Kg				
Carbon Disulfide	0.005	0.006	mg/Kg				
Carbon Tetrachloride	0.005	< 0.005	mg/Kg				
Chlorobenzene	0.005	< 0.005	mg/Kg				
Chlorodibromomethane	0.005	< 0.005	mg/Kg				
Chloroethane	0.010	< 0.010	mg/Kg				
Chloroform	0.005	< 0.005	mg/Kg				
Chloromethane	0.010	< 0.010	mg/Kg				
1,1-Dichloroethane	0.005	< 0.005	mg/Kg				
1,2-Dichloroethane	0.005	< 0.005	mg/Kg				
1,1-Dichloroethene	0.005	< 0.005	mg/Kg				
cis-1,2-Dichloroethene	0.005	< 0.005	mg/Kg				
trans-1,2-Dichloroethene	0.005	< 0.005	mg/Kg				
1,2-Dichloropropane	0.005	< 0.005	mg/Kg				
cis-1,3-Dichloropropene	0.005	< 0.005	mg/Kg				
trans-1,3-Dichloropropene	0.005	< 0.005	mg/Kg				
Ethyl Benzene	0.005	< 0.005	mg/Kg				
2-Hexanone	0.010	< 0.010	mg/Kg				
4-Methyl-2-pentanone	0.010	< 0.010	mg/Kg				
Methylene Chloride	0.010	< 0.010	mg/Kg				
Styrene	0.005	< 0.005	mg/Kg				
1,1,2,2-Tetrachloroethane	0.005	< 0.005	mg/Kg				
Tetrachloroethene	0.005	< 0.005	mg/Kg				
Toluene	0.005	< 0.005	mg/Kg				

Analytical Report

Client:

Burns & McDonnell

Project ID:

27194-4.07, Peoples-Rogers Park Main & East

Date Taken: 5/3/01

Date Received: 5/4/01

Sample Number:

RPM-SB40-002

Indeno[1,2,3-cd]pyrene

Dibenz[a,h]anthracene

Benzo[g,h,i]perylene

Time Taken: 1055

STAT Project No.: 701824 STAT Sample No.: 917104

< 0.025

< 0.025

< 0.025

mg/Kg

mg/Kg

mg/Kg

Date Reported: 5/16/01

ample No 917104			•
Analyte	Detection Limit	Result	Units
1,1,1-Trichloroethane	0.005	< 0.005	mg/Kg
1,1,2-Trichloroethane	0.005	< 0.005	mg/Kg
Trichloroethene	0.005	< 0.005	mg/Kg
Vinyl Acetate	0.010	< 0.010	mg/Kg
Vinyl Chloride	0.010	< 0.010	mg/Kg
Xylenes (total)	0.005	< 0.005	mg/Kg
Polynuclear Aromatic Hydroc	earbons Method 8270C		
Preparation Date: 5/7/01			
Analysis Date: 5/8/01			
Naphthalene	0.025	< 0.025	mg/Kg
Acenapthylene	0.025	< 0.025	mg/Kg
Acenaphthene	0.025	< 0.025	mg/Kg
Fluorene	0.025	< 0.025	mg/Kg
Phenanthrene	0.025	< 0.025	mg/Kg
Anthracene	0.025	< 0.025	mg/Kg
Fluoranthene	0.025	< 0.025	mg/Kg
Pyrene	0.025	< 0.025	mg/Kg
Chrysene	0.025	< 0.025	mg/Kg
Benzo[a]anthracene	0.025	< 0.025	mg/Kg
Benzo[b]fluoranthene	0.025	< 0.025	mg/Kg
Benzo[k]fluoranthene	0.025	< 0.025	mg/Kg
Benzo[a]pyrene	0.025	< 0.025	mg/Kg

0.025

0.025

0.025

STAT Analysis Corporation:

2201 West Campbell Park Drive, Chicago, Illinois 60612-3547 Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

Analytical Report

Client:

Burns & McDonnell

Project ID:

27194-4.07, Peoples-Rogers Park Main & East

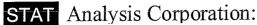
Date Received: 5/4/01

Sample Number:

RPM-SB40-002

Date Taken: 5/3/01

STAT Project No.: 701824


Time Taken: 1055

STAT Sample No.: 917104

Date Reported: 5/16/01

Analyte	Detection Limit	Result	Units	Date Analyzed	Method
Solids, Total		80.27	%	5/7/01	160.3
Total Cyanide	0.25	< 0.25	mg/Kg	5/4/01	9010B/9014
RCRA Metals					
Arsenic	0.050	5.34	mg/Kg	5/10/01	6020
Barium	0.500	52.6	mg/Kg	5/10/01	6020
Cadmium	0.500	< 0.500	mg/Kg	5/10/01	6020
Chromium	0.500	22.0	mg/Kg	5/10/01	6020
Lead	0.500	15.0	mg/Kg	5/10/01	6020
Mercury	0.040	< 0.040	mg/Kg	5/11/01	7471A
Selenium	1.00	< 1.00	mg/Kg	5/10/01	6020
Silver	0.500	< 0.500	mg/Kg	5/10/01	6020

UJ - Nondetect estimated value. Poor LCS recovery. PAR'

Analytical Report

Client:

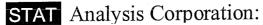
Burns & McDonnell

Project ID:

27194-4.07, Peoples-Rogers Park Main & East

RPM-SB40-003

Sample Number: STAT Project No.: 701824


STAT Sample No.: 917105

Date Received: 5/4/01

Date Taken: 5/3/01

Time Taken: 1100

•			
Analyte	Detection Limit	Result	Units
Solids, Total		80.90	%
Volatile Organic Compounds Metho	od 5035/8260B		
Analysis Date: 5/11/01			
Acetone	0.025	0.060	mg/Kg
Benzene	0.005	< 0.005	mg/Kg
Bromodichloromethane	0.005	< 0.005	mg/Kg
Bromoform	0.005	< 0.005	mg/Kg
Bromomethane	0.010	< 0.010	mg/Kg
2-Butanone	0.010	0.013	mg/Kg
Carbon Disulfide	0.005	< 0.005	mg/Kg
Carbon Tetrachloride	0.005	< 0.005	mg/Kg
Chlorobenzene	0.005	< 0.005	mg/Kg
Chlorodibromomethane	0.005	< 0.005	mg/Kg
Chloroethane	0.010	< 0.010	mg/Kg
Chloroform	0.005	< 0.005	mg/Kg
Chloromethane	0.010	< 0.010	mg/Kg
1,1-Dichloroethane	0.005	< 0.005	mg/Kg
1,2-Dichloroethane	0.005	< 0.005	mg/Kg
1,1-Dichloroethene	0.005	< 0.005	mg/Kg
cis-1,2-Dichloroethene	0.005	0.104	mg/Kg
trans-1,2-Dichloroethene	0.005	0.013	mg/Kg
1,2-Dichloropropane	0.005	< 0.005	mg/Kg
cis-1,3-Dichloropropene	0.005	< 0.005	mg/Kg
trans-1,3-Dichloropropene	0.005	< 0.005	mg/Kg
Ethyl Benzene	0.005	< 0.005	mg/Kg
2-Hexanone	0.010	< 0.010	mg/Kg
4-Methyl-2-pentanone	0.010	< 0.010	mg/Kg
Methylene Chloride	0.010	< 0.010	mg/Kg
Styrene	0.005	< 0.005	mg/Kg
1,1,2,2-Tetrachloroethane	0.005	< 0.005	mg/Kg
Tetrachloroethene	0.005	< 0.005	mg/Kg
Toluene	0.005	< 0.005	mg/Kg

Analytical Report

Client:

Burns & McDonnell

Project ID:

27194-4.07, Peoples-Rogers Park Main & East

Date Received: 5/4/01

Sample Number:

RPM-SB40-003

Date Taken: 5/3/01

Time Taken: 1100

STAT Project No.: 701824

Date Reported: 5/16/01

STAT Sample No.: 917105

Analyte		Detection Limit	Result	Units
1,1,1-Trichloroeth	ane	0.005	< 0.005	mg/Kg
1,1,2-Trichloroeth		0.005	< 0.005	mg/Kg
Trichloroethene		0.005	0.080	mg/Kg
Vinyl Acetate		0.010	< 0.010	mg/Kg
Vinyl Chloride		0.010	< 0.010	mg/Kg
Xylenes (total)		0.005	< 0.005	mg/Kg
Polynuclear Aron	natic Hydroca	rbons Method 8270C		
Preparation Date:	5/7/01			
Analyzaia Data:	5/8/01			

1 Toparamon 2 and	*· ·· · =			
Analysis Date:	5/8/01			
Naphthalene		0.025	< 0.025	mg/Kg
Acenapthylene		0.025	< 0.025	mg/Kg
Acenaphthene		0.025	< 0.025	mg/Kg
Fluorene		0.025	< 0.025	mg/Kg
Phenanthrene		0.025	< 0.025	mg/Kg
Anthracene		0.025	< 0.025	mg/Kg
Fluoranthene		0.025	< 0.025	mg/Kg
Pyrene		0.025	< 0.025	mg/Kg
Chrysene		0.025	< 0.025	mg/Kg
Benzo[a]anthracene		0.025	< 0.025	mg/Kg
Benzo[b]fluoranther	ne	0.025	< 0.025	mg/Kg
Benzo[k]fluoranther	ne	0.025	< 0.025	mg/Kg
Benzo[a]pyrene		0.025	< 0.025	mg/Kg
Indeno[1,2,3-cd]pyr	ene	0.025	< 0.025	mg/Kg
Dibenz[a,h]anthrace	ene	0.025	< 0.025	mg/Kg
Benzo[g,h,i]perylen	e	0.025	< 0.025	mg/Kg

STAT Analysis Corporation:

2201 West Campbell Park Drive, Chicago, Illinois 60612-3547 Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

Analytical Report

Client:

Burns & McDonnell

Project ID:

27194-4.07, Peoples-Rogers Park Main & East

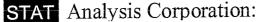
Date Received: 5/4/01

Sample Number:

RPM-SB40-003

Date Taken: 5/3/01

STAT Project No.: 701824


Time Taken: 1100

STAT Sample No.: 917105

Date Reported: 5/16/01

Detection Limit	Result	Units	Date Analyzed	Method
	80.90	%	5/7/01	160.3
0.25	< 0.25	mg/Kg	5/4/01	9010B/9014
0.050	11.5	mg/Kg	5/10/01	6020
0.500	54.1	mg/Kg	5/10/01	6020
0.500	< 0.500	mg/Kg	5/10/01	6020
0.500	20.4	mg/Kg	5/10/01	6020
0.500	15.1	mg/Kg	5/10/01	6020
0.040	< 0.040	mg/Kg	5/11/01	7471A
1.00	< 1.00 UJ	mg/Kg	5/10/01	6020
0.500	< 0.500	mg/Kg	5/10/01	6020
	0.25 0.050 0.500 0.500 0.500 0.040 1.00	80.90 0.25 < 0.25 0.050	80.90 % 0.25 < 0.25 mg/Kg 0.050 11.5 mg/Kg 0.500 54.1 mg/Kg 0.500 < 0.500 mg/Kg 0.500 20.4 mg/Kg 0.500 15.1 mg/Kg 0.040 < 0.040 mg/Kg 1.00 < 1.00 UJ mg/Kg	80.90 % 5/7/01 0.25 < 0.25 mg/Kg 5/4/01 0.050 11.5 mg/Kg 5/10/01 0.500 54.1 mg/Kg 5/10/01 0.500 < 0.500 mg/Kg 5/10/01 0.500 20.4 mg/Kg 5/10/01 0.500 15.1 mg/Kg 5/10/01 0.040 < 0.040 mg/Kg 5/10/01 1.00 < 1.00 UJ mg/Kg 5/10/01

UJ: Nondetect estimated value. Poor LCS recovery. VX

2201 West Campbell Park Drive, Chicago, Illinois 60612-3547

Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

Analytical Report

Client:

Burns & McDonnell

Project ID:

27194-4.07, Peoples-Rogers Park Main & East

Date Received: 5/4/01

Sample Number:

RPM-SB41-001

Date Taken: 5/3/01

Time Taken: 1020

STAT Project No.: 701824 STAT Sample No.: 917102

Analyte		Detection Limit	Result	Units
Solids, Total			81.44	%
BTEX Method 50 Analysis Date:	35/8260B 5/11/01			
Benzene Toluene Ethyl Benzene Xylenes (total)		0.002 0.005 0.005 0.005	< 0.002 < 0.005 < 0.005 < 0.005	mg/Kg mg/Kg mg/Kg mg/Kg
Polynuclear Aron	natic Hydrocarbon	s Method 8270C		
Preparation Date: Analysis Date:	5/7/01 5/8/01			
Naphthalene		0.025	< 0.025	mg/Kg
Acenapthylene		0.025	< 0.025	mg/Kg
Acenaphthene		0.025	< 0.025	mg/Kg
Fluorene		0.025	< 0.025	mg/Kg
Phenanthrene		0.025	< 0.025	mg/Kg
Anthracene		0.025	< 0.025	mg/Kg
Fluoranthene		0.025	< 0.025	mg/Kg
Pyrene		0.025	< 0.025	mg/Kg
Chrysene		0.025	< 0.025	mg/Kg
Benzo[a]anthracen	e	0.025	< 0.025	mg/Kg
Benzo[b]fluoranthe	ene	0.025	< 0.025	mg/Kg
Benzo[k]fluoranthe	ene	0.025	< 0.025	mg/Kg
Benzo[a]pyrene		0.025	< 0.025	mg/Kg
Indeno[1,2,3-cd]py	rene	0.025	< 0.025	mg/Kg
Dibenz[a,h]anthrac	ene	0.025	< 0.025	mg/Kg
Benzo[g,h,i]perylen	ne	0.025	< 0.025	mg/Kg

STAT Analysis Corporation:

2201 West Campbell Park Drive, Chicago, Illinois 60612-3547 Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

Analytical Report

Client:

Burns & McDonnell

Project ID:

27194-4.07, Peoples-Rogers Park Main & East

Date Received: 5/4/01

Sample Number:

RPM-SB41-001

Date Taken: 5/3/01

STAT Project No.: 701824

Time Taken: 1020

STAT Sample No.: 917102

Date Reported: 5/16/01

Analyte	Detection Limit	Result	Units	Date Analyzed	Method
Solids, Total		81.44	%	5/7/01	160.3
Total Cyanide	0.25	< 0.25	mg/Kg	5/4/01	9010B/9014
RCRA Metals					
Arsenic	0.050	7.56	mg/Kg	5/10/01	6020
Barium	0.500	73.3	mg/Kg	5/10/01	6020
Cadmium	0.500	< 0.500	mg/Kg	5/10/01	6020
Chromium	0.500	19.5	mg/Kg	5/10/01	6020
Lead	0.500	15.3	mg/Kg	5/10/01	6020
Mercury	0.040	0.047	mg/Kg	5/11/01	7471A
Selenium	1.00	< 1.00 UJ	mg/Kg	5/10/01	6020
Silver	0.500	< 0.500	mg/Kg	5/10/01	6020

UJ: Nondetect estimated value. Poor LCS recovery!

Analytical Report

Client:

Burns & McDonnell

Project ID:

27194-4.07, Peoples-Rogers Park Main & East

Date Received: 5/4/01

Sample Number:

RPM-SB42-001

Date Taken: 5/3/01

STAT Project No.: 701824

Time Taken: 1340

STAT Sample No.: 917113

Analyte		Detection Limit	Result	Units		
Solids, Total			80.98	%		
BTEX Method 50	35/8260B					
Analysis Date:	5/11/01					
Benzene		0.002	< 0.002	mg/Kg		
Toluene		0.005	< 0.005	mg/Kg		
Ethyl Benzene		0.005	< 0.005	mg/Kg		
Xylenes (total)		0.005	< 0.005	mg/Kg		
Polynuclear Aromatic Hydrocarbons Method 8270C						
Preparation Date:	5/8/01					
Analysis Date:	5/8/01					
Naphthalene		0.025	< 0.025	mg/Kg		
Acenapthylene		0.025	< 0.025	mg/Kg		
Acenaphthene		0.025	< 0.025	mg/Kg		
Fluorene		0.025	< 0.025	mg/Kg		
Phenanthrene		0.025	< 0.025	mg/Kg		
Anthracene		0.025	< 0.025	mg/Kg		
Fluoranthene		0.025	0.030	mg/Kg		
Pyrene		0.025	< 0.025	mg/Kg		
Chrysene		0.025	< 0.025	mg/Kg		
Benzo[a]anthracen	e	0.025	< 0.025	mg/Kg		
Benzo[b]fluoranthe	ene	0.025	< 0.025	mg/Kg		
Benzo[k]fluoranthe	ene	0.025	< 0.025	mg/Kg		
Benzo[a]pyrene		0.025	< 0.025	mg/Kg		
Indeno[1,2,3-cd]py	rene	0.025	< 0.025	mg/Kg		
Dibenz[a,h]anthrac	ene	0.025	< 0.025	mg/Kg		
Benzo[g,h,i]peryle	ne	0.025	< 0.025	mg/Kg		

STAT Analysis Corporation:

2201 West Campbell Park Drive, Chicago, Illinois 60612-3547 Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

Analytical Report

Client:

Burns & McDonnell

Project ID:

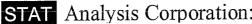
27194-4.07, Peoples-Rogers Park Main & East

Date Received: 5/4/01

RPM-SB42-001

Date Taken: 5/3/01

Sample Number: STAT Project No.: 701824


Time Taken: 1340

STAT Sample No.: 917113

Date Reported: 5/16/01

Analyte	Detection Limit	Result	Units	Date Analyzed	Method
Solids, Total		80.98	%	5/7/01	160.3
Total Cyanide	0.25	< 0.25	mg/Kg	5/8/01	9010B/9014
RCRA Metals					
Arsenic	0.050	4.80	mg/Kg	5/16/01	6020
Barium	0.500	62.9	mg/Kg	5/16/01	6020
Cadmium	0.500	< 0.500	mg/Kg	5/16/01	6020
Chromium	0.500	20.9	mg/Kg	5/16/01	6020
Lead	0.500	70.6	mg/Kg	5/16/01	6020
Mercury	0.040	0.044	mg/Kg	5/11/01	7471A
Selenium	1.00	< 1.00 UJ	mg/Kg	5/16/01	6020
Silver	0.500	< 0.500	mg/Kg	5/16/01	6020

UJ: Nondetect estimated value. Poor LCS recovered with

STAT Analysis Corporation:
2201 West Campbell Park Drive, Chicago, Illinois 60612-3547 Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

Analytical Report

Client:

Burns & McDonnell

Project ID:

27194-4.07, Peoples-Rogers Park Main & East

Date Received: 5/4/01

Sample Number:

RPM-SB42-002

Date Taken: 5/3/01

STAT Project No.: 701824

Time Taken: 1345

STAT Sample No.: 917114

Analyte	Detection Limit	Result	Units
Solids, Total		81.65	%
BTEX Method 5035/8260B			
Analysis Date: 5/11/01			
Benzene	0.002	< 0.002	mg/Kg
Toluene	0.005	< 0.005	mg/Kg
Ethyl Benzene	0.005	< 0.005	mg/Kg
Xylenes (total)	0.005	< 0.005	mg/Kg
Polynuclear Aromatic Hydroca	rbons Method 8270C		
Preparation Date: 5/8/01			
Analysis Date: 5/8/01			
Naphthalene	0.025	< 0.025	mg/Kg
Acenapthylene	0.025	< 0.025	mg/Kg
Acenaphthene	0.025	< 0.025	mg/Kg
Fluorene	0.025	< 0.025	mg/Kg
Phenanthrene	0.025	< 0.025	mg/Kg
Anthracene	0.025	< 0.025	mg/Kg
Fluoranthene	0.025	< 0.025	mg/Kg
Pyrene	0.025	< 0.025	mg/Kg
Chrysene	0.025	< 0.025	mg/Kg
Benzo[a]anthracene	0.025	< 0.025	mg/Kg
Benzo[b]fluoranthene	0.025	< 0.025	mg/Kg
Benzo[k]fluoranthene	0.025	< 0.025	mg/Kg
Benzo[a]pyrene	0.025	< 0.025	mg/Kg
Indeno[1,2,3-cd]pyrene	0.025	< 0.025	mg/Kg
Dibenz[a,h]anthracene	0.025	< 0.025	mg/Kg
Benzo[g,h,i]perylene	0.025	< 0.025	mg/Kg

Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

Analytical Report

Client:

Burns & McDonnell

Project ID:

27194-4.07, Peoples-Rogers Park Main & East

Date Received: 5/4/01

Sample Number:

RPM-SB42-002

Date Taken: 5/3/01

STAT Project No.: 701824

Time Taken: 1345

STAT Sample No.: 917114

Date Reported: 5/16/01

Analyte	Detection Limit	Result	Units	Date Analyzed	Method
Solids, Total		81.65	%	5/7/01	160.3
Total Cyanide	0.25	< 0.25	mg/Kg	5/8/01	9010B/9014
RCRA Metals					
Arsenic	0.050	2.65	mg/Kg	5/16/01	6020
Barium	0.500	45.2	mg/Kg	5/16/01	6020
Cadmium	0.500	< 0.500	mg/Kg	5/16/01	6020
Chromium	0.500	19.6	mg/Kg	5/16/01	6020
Lead	0.500	27.3	mg/Kg	5/16/01	6020
Mercury	0.040	< 0.040	mg/Kg	5/11/01	7471A
Selenium	1.00	< 1.00	mg/Kg	5/16/01	6020
Silver	0.500	< 0.500	mg/Kg	5/16/01	6020

UJ: Mondetect estimated value. Poor LES recovery, Wil

Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

Analytical Report

Client:

Burns & McDonnell

Project ID:

27194-4.07, Peoples-Rogers Park Main & East

Date Received: 5/4/01

Sample Number:

RPM-SB43-001

Date Taken: 5/3/01 Time Taken: 1245

STAT Project No.: 701824

STAT Sample No.: 917112

Analyte	Detection Limit	Result	Units
Solids, Total		76.06	%
	n.		
BTEX Method 5035/82601 Analysis Date: 5/11/01			
Analysis Date: 5/11/01		0.000	Δr
Benzene	0.002	0.003	mg/Kg
Toluene	0.005	< 0.005	mg/Kg
Ethyl Benzene	0.005	< 0.005	mg/Kg
Xylenes (total)	0.005	< 0.005	mg/Kg
D. L Avemetic Hy	drogerhous Method 8270C		
_	drocarbons Method 8270C		
1 1 Puntuis -			
Analysis Date: 5/8/01		0.005	ITΥ
Naphthalene	0.025	< 0.025	mg/Kg
Acenapthylene	0.025	< 0.025	mg/Kg
Acenaphthene	0.025	< 0.025	mg/Kg
Fluorene	0.025	< 0.025	mg/Kg
Phenanthrene	0.025	< 0.025	mg/Kg
Anthracene	0.025	< 0.025	mg/Kg
Fluoranthene	0.025	< 0.025	mg/Kg
Pyrene	0.025	< 0.025	mg/Kg
Chrysene	0.025	< 0.025	mg/Kg
Benzo[a]anthracene	0.025	< 0.025	mg/Kg
Benzo[b]fluoranthene	0.025	< 0.025	mg/Kg
Benzo[k]fluoranthene	0.025	< 0.025	mg/Kg
Benzo[a]pyrene	0.025	< 0.025	mg/Kg
Indeno[1,2,3-cd]pyrene	0.025	< 0.025	mg/Kg
Dibenz[a,h]anthracene	0.025	< 0.025	mg/Kg
Benzo[g,h,i]perylene	0.025	< 0.025	mg/Kg

Analytical Report

Client:

Burns & McDonnell

Project ID:

27194-4.07, Peoples-Rogers Park Main & East

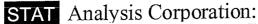
Date Received: 5/4/01

Sample Number:

RPM-SB43-001

Date Taken: 5/3/01

STAT Project No.: 701824


Time Taken: 1245

STAT Sample No.: 917112

Date Reported: 5/16/01

Analyte	Detection Limit	Result	Units	Date Analyzed	Method
Solids, Total		76.06	%	5/7/01	160.3
Total Cyanide	0.25	< 0.25	mg/Kg	5/8/01	9010B/9014
RCRA Metals					
Arsenic	0.050	10.2	mg/Kg	5/16/01	6020
Barium	0.500	45.6	mg/Kg	5/16/01	6020
Cadmium	0.500	< 0.500	mg/Kg	5/16/01	6020
Chromium	0.500	23.0	mg/Kg	5/16/01	6020
Lead	0.500	17.4	mg/Kg	5/16/01	6020
Mercury	0.040	< 0.040	mg/Kg	5/11/01	7471A
Selenium	1.00	< 1.00 UJ	mg/Kg	5/16/01	6020
Silver	0.500	< 0.500	mg/Kg	5/16/01	6020

UJ - Nondetect estimated value. Poor LCS recovery, und

Analytical Report

Client:

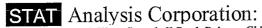
Burns & McDonnell

Project ID:

27194-4.07, Peoples-Rogers Park Main & East

Date Received: 5/4/01

Sample Number:


RPM-SB44-001

Date Taken: 5/3/01

Time Taken: 1230

STAT Project No.: 701824 STAT Sample No.: 917110

Analyte		Detection Limit	Result	Units
Solids, Total			77.09	%
BTEX Method 50	35/8260B			
Analysis Date:	5/11/01			
Benzene		0.002	< 0.002	mg/Kg
Toluene		0.005	< 0.005	mg/Kg
Ethyl Benzene		0.005	< 0.005	mg/Kg
Xylenes (total)		0.005	< 0.005	mg/Kg
Polynuclear Arom	estic Hydrocarbo	ns Method 8270C		
Preparation Date:	5/8/01			
Analysis Date:	5/8/01			
Naphthalene		0.025	< 0.025	mg/Kg
Acenapthylene		0.025	0.039	mg/Kg
Acenaphthene		0.025	< 0.025	mg/Kg
Fluorene		0.025	< 0.025	mg/Kg
Phenanthrene		0.025	0.098	mg/Kg
Anthracene		0.025	< 0.025	mg/Kg
Fluoranthene		0.025	0.114	mg/Kg
Pyrene		0.025	0.157	mg/Kg
Chrysene		0.025	0.153	mg/Kg
Benzo[a]anthracen	e	0.025	0.087	mg/Kg
Benzo[b]fluoranthe	ene	0.025	0.046	mg/Kg
Benzo[k]fluoranthe	ene	0.025	0.046	mg/Kg
Benzo[a]pyrene		0.025	0.071	mg/Kg
Indeno[1,2,3-cd]py	rene	0.025	0.030	mg/Kg
Dibenz[a,h]anthrac	ene	0.025	0.025	mg/Kg
Benzo[g,h,i]perylen	ne	0.025	0.033	mg/Kg

Analytical Report

Client:

Burns & McDonnell

Project ID:

27194-4.07, Peoples-Rogers Park Main & East

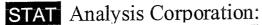
Date Received: 5/4/01

Sample Number:

RPM-SB44-001

Date Taken: 5/3/01

STAT Project No.: 701824


Time Taken: 1230

STAT Sample No.: 917110

Date Reported: 5/16/01

Detection Limit	Result	Units	Date Analyzed	Method
	77.09	%	5/7/01	160.3
0.25	< 0.25	mg/Kg	5/8/01	9010B/9014
0.050	7.17	mg/Kg	5/16/01	6020
0.500	89.3	mg/Kg	5/16/01	6020
0.500	0.659	mg/Kg	5/16/01	6020
0.500	21.2	mg/Kg	5/16/01	6020
0.500	121	mg/Kg	5/16/01	6020
0.040	0.071	mg/Kg	5/11/01	7471A
1.00	< 1.00 UJ	mg/Kg	5/16/01	6020
0.500	< 0.500	mg/Kg	5/16/01	6020
	0.25 0.050 0.500 0.500 0.500 0.500 0.040 1.00	77.09 0.25 < 0.25 0.050	77.09 % 0.25 < 0.25 mg/Kg 0.050 7.17 mg/Kg 0.500 89.3 mg/Kg 0.500 0.659 mg/Kg 0.500 21.2 mg/Kg 0.500 121 mg/Kg 0.040 0.071 mg/Kg 1.00 < 1.00 J mg/Kg	77.09 % 5/7/01 0.25 < 0.25 mg/Kg 5/8/01 0.050 7.17 mg/Kg 5/16/01 0.500 89.3 mg/Kg 5/16/01 0.500 0.659 mg/Kg 5/16/01 0.500 21.2 mg/Kg 5/16/01 0.500 121 mg/Kg 5/16/01 0.040 0.071 mg/Kg 5/16/01 1.00 < 1.00 UJ mg/Kg 5/16/01

UJ: Nondetect estimated value. Foor LCS recovery. VP'

Analytical Report

Client:

Burns & McDonnell

Project ID:

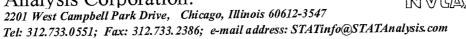
27194-4.07, Peoples-Rogers Park Main & East

Date Received: 5/4/01

Sample Number:

RPM-SB44-002

Date Taken: 5/3/01


STAT Project No.: 701824

Time Taken: 1240

STAT Sample No.: 917111

Analyte		Detection Limit	Result	Units
Solids, Total			80.37	%
BTEX Method 50	35/8260B			
Analysis Date:	5/11/01			
Benzene		0.002	< 0.002	mg/Kg
Toluene		0.005	< 0.005	mg/Kg
Ethyl Benzene		0.005	< 0.005	mg/Kg
Xylenes (total)		0.005	< 0.005	mg/Kg
Polynuclear Arom	atia Uydracarban	s Method 8270C		
Preparation Date:	5/8/01	S Without 0270C		
Analysis Date:	5/8/01			
•	5/6/01	0.025	< 0.025	mg/Kg
Naphthalene		0.025	< 0.025	mg/Kg mg/Kg
Acenapthylene			< 0.025	mg/Kg mg/Kg
Acenaphthene		0.025		
Fluorene		0.025	< 0.025	mg/Kg
Phenanthrene		0.025	< 0.025	mg/Kg
Anthracene		0.025	< 0.025	mg/Kg
Fluoranthene		0.025	< 0.025	mg/Kg
Pyrene		0.025	< 0.025	mg/Kg
Chrysene		0.025	< 0.025	mg/Kg
Benzo[a]anthracene	e	0.025	< 0.025	mg/Kg
Benzo[b]fluoranthe	ene	0.025	< 0.025	mg/Kg
Benzo[k]fluoranthe	ene	0.025	< 0.025	mg/Kg
Benzo[a]pyrene		0.025	< 0.025	mg/Kg
Indeno[1,2,3-cd]py	rene	0.025	< 0.025	mg/Kg
Dibenz[a,h]anthrac		0.025	< 0.025	mg/Kg
Benzo[g,h,i]peryler		0.025	< 0.025	mg/Kg

STAT Analysis Corporation: 2201 West Campbell Park Drive, Chicago, Illinois 60612-3547

Analytical Report

Client:

Burns & McDonnell

Project ID:

27194-4.07, Peoples-Rogers Park Main & East

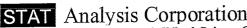
Date Received: 5/4/01

Sample Number:

RPM-SB44-002

Date Taken: 5/3/01

STAT Project No.: 701824


Time Taken: 1240

Date Reported: 5/16/01

STAT Sample No.: 917111

Analyte	Detection Limit	Result	Units	Date Analyzed	Method
Solids, Total		80.37	%	5/7/01	160.3
Total Cyanide	0.25	< 0.25	mg/Kg	5/8/01	9010B/9014
RCRA Metals					
Arsenic	0.050	4.13	mg/Kg	5/16/01	6020
Barium	0.500	55.2	mg/Kg	5/16/01	6020
Cadmium	0.500	< 0.500	mg/Kg	5/16/01	6020
Chromium	0.500	22.0	mg/Kg	5/16/01	6020
Lead	0.500	14.7	mg/Kg	5/16/01	6020
Mercury	0.040	< 0.040	mg/Kg	5/11/01	7471A
Selenium	1.00	< 1.00	mg/Kg	5/16/01	6020
Silver	0.500	< 0.500	mg/Kg	5/16/01	6020

UJ: Nondetect estimated value. Poor LCS recovery uni

STAT Analysis Corporation:
2201 West Campbell Park Drive, Chicago, Illinois 60612-3547 Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

Analytical Report

Client:

Burns & McDonnell

Project ID:

27194-4.07, Peoples-Rogers Park Main & East

Date Received: 5/4/01

Sample Number:

RPM-SB45-001

Date Taken: 5/3/01 Time Taken: 1210

STAT Project No.: 701824

Date Reported: 5/16/01

STAT Sample No.: 917109

Analyte		Detection Limit	Result	Units				
Solids, Total			82.68	%				
BTEX Method 50	35/8260B							
Analysis Date:	5/11/01							
Benzene		0.002	0.002	mg/Kg				
Toluene		0.005	< 0.005	mg/Kg				
Ethyl Benzene		0.005	< 0.005	mg/Kg				
Xylenes (total)		0.005	< 0.005	mg/Kg				
Aylenes (total)								
Polynuclear Aromatic Hydrocarbons Method 8270C								
Preparation Date:	5/7/01							
Analysis Date:	5/8/01							
•	• , • , • , •	0.025	< 0.025	mg/Kg				
Naphthalene		0.025	< 0.025	mg/Kg				
Acenapthylene		0.025	< 0.025	mg/Kg				
Acenaphthene		0.025	< 0.025	mg/Kg				
Fluorene			< 0.025	mg/Kg				
Phenanthrene		0.025	< 0.025	mg/Kg				
Anthracene		0.025	< 0.025	mg/Kg				
Fluoranthene		0.025	< 0.025	mg/Kg				
Pyrene		0.025	< 0.025	mg/Kg				
Chrysene		0.025		mg/Kg				
Benzo[a]anthracene		0.025	< 0.025					
Benzo[b]fluoranthene		0.025	< 0.025	mg/Kg				
Benzo[k]fluoranthene		0.025	< 0.025	mg/Kg				
Benzo[a]pyrene		0.025	< 0.025	mg/Kg				
Indeno[1,2,3-cd]pyrene		0.025	< 0.025	mg/Kg				
Dibenz[a,h]anthracene		0.025	< 0.025	mg/Kg				
Benzo[g,h,i]perylene		0.025	< 0.025	mg/Kg				

Analytical Report

Client:

Burns & McDonnell

Project ID:

27194-4.07, Peoples-Rogers Park Main & East

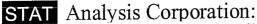
Date Received: 5/4/01

Sample Number:

RPM-SB45-001

Date Taken: 5/3/01

STAT Project No.: 701824


Time Taken: 1210

STAT Sample No.: 917109

Date Reported: 5/16/01

Analyte	Detection Limit	Result	Units	Date Analyzed	Method
Solids, Total		82.68	%	5/7/01	160.3
Total Cyanide	0.25	< 0.25	mg/Kg	5/8/01	9010B/9014
RCRA Metals					
Arsenic	0.050	9.31	mg/Kg	5/16/01	6020
Barium	0.500	40.8	mg/Kg	5/16/01	6020
Cadmium	0.500	< 0.500	mg/Kg	5/16/01	6020
Chromium	0.500	19.7	mg/Kg	5/16/01	6020
Lead	0.500	15.4	mg/Kg	5/16/01	6020
Mercury	0.040	< 0.040	mg/Kg	5/11/01	7471A
Selenium	1.00	< 1.00 UJ	mg/Kg	5/16/01	6020
Silver	0.500	< 0.500	mg/Kg	5/16/01	6020

UJ: Nondetect estimated value. Poor LCS recovery.

Analytical Report

Client:

Burns & McDonnell

Project ID:

27194-4.07, Peoples-Rogers Park Main & East

Date Taken: 5/3/01

Date Received: 5/4/01

Sample Number:

RPM-SB46-001

Time Taken: 1150

STAT Project No.: 701824 STAT Sample No.: 917107

Date Reported: 5/16/01

Detection Limit	Result	Units
	84.33	%
•		
0.002	< 0.002	mg/Kg
0.005	< 0.005	mg/Kg
0.005	< 0.005	mg/Kg
0.005	< 0.005	mg/Kg
Method 8270C		
Witchiou 02700		
0.025	< 0.025	mg/Kg
		mg/Kg
	< 0.025	mg/Kg
0.025	< 0.025	mg/Kg
	0.002 0.005 0.005 0.005 0.005 0.025	0.002

Analytical Report

Client:

Burns & McDonnell

Project ID:

27194-4.07, Peoples-Rogers Park Main & East

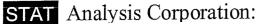
Date Received: 5/4/01

Sample Number:

RPM-SB46-001

Date Taken: 5/3/01

STAT Project No.: 701824


Time Taken: 1150

STAT Sample No.: 917107

Date Reported: 5/16/01

Analyte	Detection Limit	Result	Units	Date Analyzed	Method
Solids, Total		84.33	%	5/7/01	160.3
Total Cyanide	0.25	< 0.25	mg/Kg	5/4/01	9010B/9014
RCRA Metals					
Arsenic	0.050	3.87	mg/Kg	5/15/01	6020
Barium	0.500	60.7	mg/Kg	5/15/01	6020
Cadmium	0.500	< 0.500	mg/Kg	5/15/01	6020
Chromium	0.500	24.2	mg/Kg	5/15/01	6020
Lead	0.500	15.2	mg/Kg	5/15/01	6020
Mercury	0.040	< 0.040	mg/Kg	5/11/01	7471A
Selenium	1.00	< 1.00 じょ	mg/Kg	5/15/01	6020
Silver	0.500	< 0.500	mg/Kg	5/15/01	6020

UJ: Nondetect estimated value. Poor LCS recovery. UP

Analytical Report

Client:

Burns & McDonnell

Project ID:

27194-4.07, Peoples-Rogers Park Main & East

Date Received: 5/4/01

Date Taken: 5/3/01

Sample Number:

RPM-SB46-002

Time Taken: 1200

STAT Project No.: 701824 STAT Sample No.: 917108

Date Reported: 5/16/01

Analyte		Detection Limit	Result	Units
Solids, Total			81.02	%
BTEX Method 50 Analysis Date:	35/8260B 5/11/01			
Benzene Toluene Ethyl Benzene Xylenes (total)		0.002 0.005 0.005 0.005	0.003 < 0.005 < 0.005 < 0.005	mg/Kg mg/Kg mg/Kg mg/Kg
Polynuclear Aron Preparation Date: Analysis Date:	natic Hydrocarbons 5/7/01 5/8/01	s Method 8270C		
Naphthalene Acenapthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Chrysene Benzo[a]anthracen Benzo[b]fluoranthe	e	0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025	< 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025 < 0.025	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg
Benzo[k]fluorantho Benzo[a]pyrene Indeno[1,2,3-cd]py Dibenz[a,h]anthrac Benzo[g,h,i]perylen	rene rene	0.025 0.025 0.025 0.025 0.025	< 0.025 < 0.025 < 0.025 < 0.025 < 0.025	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg

Analytical Report

Client:

Burns & McDonnell

Project ID:

27194-4.07, Peoples-Rogers Park Main & East

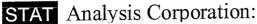
Date Received: 5/4/01

Sample Number:

RPM-SB46-002

Date Taken: 5/3/01

STAT Project No.: 701824


Time Taken: 1200

Date Reported: 5/16/01

STAT Sample No.: 917108

Analyte	Detection Limit	Result	Units	Date Analyzed	Method
Solids, Total		81.02	%	5/7/01	160.3
Total Cyanide	0.25	< 0.25	mg/Kg	5/8/01	9010B/9014
RCRA Metals					
Arsenic	0.050	2.49	mg/Kg	5/16/01	6020
Barium	0.500	55.9	mg/Kg	5/16/01	6020
Cadmium	0.500	< 0.500	mg/Kg	5/16/01	6020
Chromium	0.500	19.6	mg/Kg	5/16/01	6020
Lead	0.500	15.6	mg/Kg	5/16/01	6020
Mercury	0.040	< 0.040	mg/Kg	5/11/01	7471A
Selenium	1.00	< 1.00	mg/Kg	5/16/01	6020
Silver	0.500	< 0.500	mg/Kg	5/16/01	6020

UJ: Nordetect estimated value. Poor LCS recovery

Analytical Report

Client:

Burns & McDonnell

Project ID:

27194-4.07, Peoples-Rogers Park Main & East

RPM-SB47-001

Sample Number: STAT Project No.: 701824

STAT Sample No.: 917106

Date Taken: 5/3/01 Time Taken: 1120

Date Reported: 5/16/01

Date Received: 5/4/01

Analyte	Detection Limit	Result	Units
Solids, Total		85.14	%
BTEX Method 5035/8260 Analysis Date: 5/11/0			
Benzene	0.002	< 0.002	mg/Kg
Toluene	0.005	< 0.005	mg/Kg
Ethyl Benzene	0.005	< 0.005	mg/Kg
Xylenes (total)	0.005	< 0.005	mg/Kg
Polynuclear Aromatic Hy	drocarbons Method 8270C		
Preparation Date: 5/7/01			
Analysis Date: 5/8/01			
Naphthalene	0.025	< 0.025	mg/Kg
Acenapthylene	0.025	< 0.025	mg/Kg
Acenaphthene	0.025	< 0.025	mg/Kg
Fluorene	0.025	< 0.025	mg/Kg
Phenanthrene	0.025	< 0.025	mg/Kg
Anthracene	0.025	< 0.025	mg/Kg
Fluoranthene	0.025	< 0.025	mg/Kg
Pyrene	0.025	< 0.025	mg/Kg
Chrysene	0.025	< 0.025	mg/Kg
Benzo[a]anthracene	0.025	< 0.025	mg/Kg
Benzo[b]fluoranthene	0.025	< 0.025	mg/Kg
Benzo[k]fluoranthene	0.025	< 0.025	mg/Kg
Benzo[a]pyrene	0.025	< 0.025	mg/Kg
Indeno[1,2,3-cd]pyrene	0.025	< 0.025	mg/Kg
Dibenz[a,h]anthracene	0.025	< 0.025	mg/Kg
Benzo[g,h,i]perylene	0.025	< 0.025	mg/Kg

Analytical Report

Client:

Burns & McDonnell

Project ID:

27194-4.07, Peoples-Rogers Park Main & East

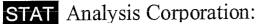
Date Received: 5/4/01

Sample Number:

RPM-SB47-001

Date Taken: 5/3/01

STAT Project No.: 701824


Time Taken: 1120

STAT Sample No.: 917106

Date Reported: 5/16/01

Analyte	Detection Limit	Result	Units	Date Analyzed	Method
Solids, Total		85.14	%	5/7/01	160.3
Total Cyanide	0.25	< 0.25	mg/Kg	5/4/01	9010B/9014
RCRA Metals					
Arsenic	0.050	3.35	mg/Kg	5/10/01	6020
Barium	0.500	25.2	mg/Kg	5/10/01	6020
Cadmium	0.500	< 0.500	mg/Kg	5/10/01	6020
Chromium	0.500	10.2	mg/Kg	5/10/01	6020
Lead	0.500	9.53	mg/Kg	5/10/01	6020
Mercury	0.040	< 0.040	mg/Kg	5/11/01	7471A
Selenium	1.00	< 1.00	mg/Kg	5/10/01	6020
Silver	0.500	< 0.500	mg/Kg	5/10/01	6020

UJ: Nondetect estimated value, Poor LCS recovery, UKIN

2201 West Campbell Park Drive, Chicago, Illinois 60612-3547

Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

Analytical Report

Client:

Burns & McDonnell

Project ID:

27194-4.07, Peoples-Rogers Park Main & East

Date Received: 5/3/01

Sample Number:

RPM-SB60-001

Date Taken: 5/2/01

STAT Project No.: 701817

Time Taken: 1515

STAT Sample No.: 917055

Date Reported: 5/7/01

Analyte	Detection Limit	Result	Units
Solids, Total		80.56	%
BTEX/Styrene Method 5035/8260B			
Analysis Date: 5/4/01			
Benzene	0.002	0.004	mg/Kg
Toluene	0.005	< 0.005	mg/Kg
Ethyl Benzene	0.005	< 0.005	mg/Kg
Xylenes (total)	0.005	< 0.005	mg/Kg
Styrene	0.005	< 0.005	mg/Kg
Polynuclear Aromatic Hydrocarbon	s Method 8270C		
Preparation Date: 5/4/01			
Analysis Date: 5/5/01			
<u></u>	0.025	0.065	mg/Kg
Naphthalene Acenapthylene	0.025	0.048	mg/Kg
Acenaphthene	0.025	0.037	mg/Kg
Fluorene	0.025	0.152	mg/Kg
Phenanthrene	0.025	0.277	mg/Kg
Anthracene	0.025	0.093	mg/Kg
Fluoranthene	0.025	0.067	mg/Kg
Pyrene	0.025	0.111	mg/Kg
Chrysene	0.025	0.050	mg/Kg
Benzo[a]anthracene	0.025	0.044	mg/Kg
Benzo[b]fluoranthene	0.025	< 0.025	mg/Kg
Benzo[k]fluoranthene	0.025	< 0.025	mg/Kg
Benzo[a]pyrene	0.025	< 0.025	mg/Kg
Indeno[1,2,3-cd]pyrene	0.025	< 0.025	mg/Kg
Dibenz[a,h]anthracene	0.025	< 0.025	mg/Kg
Benzo[g,h,i]perylene	0.025	< 0.025	mg/Kg

Analytical Report

Client:

Burns & McDonnell

Project ID:

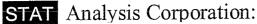
27194-4.07, Peoples-Rogers Park Main & East

Date Received: 5/3/01

Sample Number:

RPM-SB60-001

Date Taken: 5/2/01


Time Taken: 1515

STAT Project No.: 701817 STAT Sample No.: 917055

Date Reported: 5/7/01

Analyte	Detection Limit	Result	Units	Date Analyzed	Method
Solids, Total		80.56	%	5/4/01	160.3
Total Cyanide	0.25	< 0.25	mg/Kg	5/4/01	9010B/9014
RCRA Metals					
Arsenic	0.050	7.95	mg/Kg	5/6/01	6020
Barium	0.500	47.7	mg/Kg	5/6/01	6020
Cadmium	0.500	< 0.500	mg/Kg	5/6/01	6020
Chromium	0.500	21.7	mg/Kg	5/6/01	6020
Lead	0.500	18.1	mg/Kg	5/6/01	6020
Mercury	0.040	< 0.040	mg/Kg	5/7/01	7471A
Selenium	1.00	< 0.500 UJ	mg/Kg	5/6/01	6020
Silver	0.500	< 0.500	mg/Kg	5/6/01	6020

UJ: Nondétect estimated value. Pour LCS recovery KAN

Analytical Report

Client:

Burns & McDonnell

Project ID:

27194-4.07, Peoples-Rogers Park Main & East

Date Received: 5/3/01

Sample Number:

RPM-SB60-002

Date Taken: 5/2/01

Time Taken: 1520

STAT Project No.: 701817 STAT Sample No.: 917056

Date Reported: 5/7/01

Analyte		Detection Limit	Result	Units
Solids, Total			82.77	%
BTEX/Styrene Me	ethod 5035/8260B			
Analysis Date:	5/4/01			
Benzene		0.002	< 0.002	mg/Kg
Toluene		0.005	< 0.005	mg/Kg
Ethyl Benzene		0.005	< 0.005	mg/Kg
Xylenes (total)		0.005	< 0.005	mg/Kg
Styrene		0.005	< 0.005	mg/Kg
Polynuclear Aron	atic Hydrocarbon	s Method 8270C		
Preparation Date:	5/4/01	3 1/10th ou 02 / 0 0		
Analysis Date:	5/5/01			
•		0.025	< 0.025	mg/Kg
Naphthalene		0.025	< 0.025	mg/Kg
Acenapthylene Acenaphthene		0.025	< 0.025	mg/Kg
Fluorene		0.025	< 0.025	mg/Kg
Phenanthrene		0.025	< 0.025	mg/Kg
Anthracene		0.025	< 0.025	mg/Kg
Fluoranthene		0.025	< 0.025	mg/Kg
Pyrene		0.025	< 0.025	mg/Kg
Chrysene		0.025	< 0.025	mg/Kg
Benzo[a]anthracen	e	0.025	< 0.025	mg/Kg
Benzo[b]fluoranthe		0.025	< 0.025	mg/Kg
Benzo[k]fluoranthe		0.025	< 0.025	mg/Kg
Benzo[a]pyrene		0.025	< 0.025	mg/Kg
Indeno[1,2,3-cd]py	rene	0.025	< 0.025	mg/Kg
Dibenz[a,h]anthrac		0.025	< 0.025	mg/Kg
Benzo[g,h,i]perylen		0.025	< 0.025	mg/Kg

Analytical Report

Client:

Burns & McDonnell

Project ID:

27194-4.07, Peoples-Rogers Park Main & East

Date Received: 5/3/01

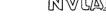
Sample Number:

RPM-SB60-002

Date Taken: 5/2/01

STAT Project No.: 701817

Time Taken: 1520


STAT Sample No.: 917056

Date Reported: 5/7/01

Analyte	Detection Limit	Result	Units	Date Analyzed	Method
Solids, Total		82.77	%	5/4/01	160.3
Total Cyanide	0.25	< 0.25	mg/Kg	5/4/01	9010B/9014
RCRA Metals					
Arsenic	0.050	5.23	mg/Kg	5/6/01	6020
Barium	0.500	48.7	mg/Kg	5/6/01	6020
Cadmium	0.500	< 0.500	mg/Kg	5/6/01	6020
Chromium	0.500	21.3	mg/Kg	5/6/01	6020
Lead	0.500	13.1	mg/Kg	5/6/01	6020
Mercury	0.040	< 0.040	mg/Kg	5/7/01	7471A
Selenium	1.00	< 1.00	mg/Kg	5/6/01	6020
Silver	0.500	< 0.500	mg/Kg	5/6/01	6020

UJ: Mondetect estimated value. Poor LCS recovery. KAN

Analytical Report

Client:

Burns and McDonnell

Project ID:

27194-3.02, Rogers Park Main

Sample Number:

RPM-SB076-001

STAT Project No.: 702045

STAT Sample No.: 918697

Date Received: 06/14/2001 Date Taken: 06/14/2001

Time Taken: 1400

Analyte	Detection Limit	Result	Units
Solids, Total		80.64	%
Volatile Organic Compounds Metho	d 5035/8260B		
Analysis Date: 06/20/2001			
Acetone	0.025	0.079	mg/Kg
Benzene	0.005	< 0.005	mg/Kg
Bromodichloromethane	0.005	< 0.005	mg/Kg
Bromoform	0.005	< 0.005	mg/Kg
Bromomethane	0.010	< 0.010	mg/Kg
2-Butanone	0.010	0.024	mg/Kg
Carbon Disulfide	0.005	< 0005	mg/Kg
Carbon Tetrachloride	0.005	< 0.005	mg/Kg
Chlorobenzene	0.005	< 0.005	mg/Kg
Chlorodibromomethane	0.005	< 0.005	mg/Kg
Chloroethane	0.010	< 0.010	mg/Kg
Chloroform	0.005	< 0.005	mg/Kg
Chloromethane	0.010	< 0.010	mg/Kg
1,1-Dichloroethane	0.005	< 0.005	mg/Kg
1,2-Dichloroethane	0.005	< 0.005	mg/Kg
1,1-Dichloroethene	0.005	< 0.005	mg/Kg
cis-1,2-Dichloroethene	0.005	< 0.005	mg/Kg
trans-1,2-Dichloroethene	0.005	< 0.005	mg/Kg
1,2-Dichloropropane	0.005	< 0.005	mg/Kg
cis-1,3-Dichloropropene	0.005	< 0.005	mg/Kg
trans-1,3-Dichloropropene	0.005	< 0.005	mg/Kg
Ethyl Benzene	0.005	< 0.005	mg/Kg
2-Hexanone	0.010	< 0.010	mg/Kg
4-Methyl-2-pentanone	0.010	< 0.010	mg/Kg
Methylene Chloride	0.010	< 0.010	mg/Kg
Styrene	0.005	< 0.005	mg/Kg
1,1,2,2-Tetrachloroethane	0.005	< 0.005	mg/Kg
Tetrachloroethene	0.005	< 0.005	mg/Kg
Toluene	0.005	< 0.005	mg/Kg
1,1,1-Trichloroethane	0.005	< 0.005	mg/Kg
1,1,2-Trichloroethane	0005	< 0.005	mg/Kg
Trichloroethene	0.005	< 0.005	mg/Kg

Analytical Report

Client:

Burns and McDonnell

Project ID:

27194-3.02, Rogers Park Main

RPM-SB076-001

Sample Number: STAT Project No.: 702045

STAT Sample No.: 918697

Date Received: 06/14/2001

Date Taken: 06/14/2001

Time Taken: 1400

Analyte	Detection Limit	Result	Units
Vinyl Acetate	0.010	< 0.010	mg/Kg
Vinyl Chloride	0.010	< 0.010	mg/Kg
Xylenes (total)	0.005	< 0.005	mg/Kg
Polynuclear Aromatic Hydrocarbon	s Method 8270C		
Preparation Date: 06/15/2001			
Analysis Date: 06/17/2001			
Naphthalene	0.025	< 0.025	mg/Kg
Acenapthylene	0.025	< 0.025	mg/Kg
Acenaphthene	0.025	< 0.025	mg/Kg
Fluorene	0.025	< 0.025	mg/Kg
Phenanthrene	0.025	< 0.025	mg/Kg
Anthracene	0.025	< 0.025	mg/Kg
Fluoranthene	0.025	< 0.025	mg/Kg
Pyrene	0.025	< 0.025	mg/Kg
Chrysene	0.025	< 0.025	mg/Kg
Benzo[a]anthracene	0.025	< 0.025	mg/Kg
Benzo[b]fluoranthene	0.025	< 0.025	mg/Kg
Benzo[k]fluoranthene	0.025	< 0.025	mg/Kg
Benzo[a]pyrene	0.025	< 0.025	mg/Kg
Indeno[1,2,3-cd]pyrene	0.025	< 0.025	mg/Kg
Dibenz[a,h]anthracene	0.025	< 0.025	mg/Kg
Benzo[g,h,i]perylene	0.025	< 0.025	mg/Kg

Analytical Report

Client:

Burns and McDonnell

Project ID:

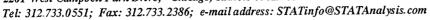
27194-3.02, Rogers Park Main

Sample Number:

RPM-SB076-001

STAT Project No.: 702045

STAT Sample No.: 918697


Date Received: 06/14/2001

Date Taken: 06/14/2001

Time Taken: 1400

Analyte	Detection Limit	Result	Units	Date Analyzed	Method
Solids, Total		80.64	%	06/20/2001	160.3
Total Cyanide	0.25	0.30	mg/Kg	06/18/2001	9010B/9014
RCRA Metals					
Arsenic	0.050	6.69	mg/Kg	06/20/2001	6020
Barium	0.500	74.7	mg/Kg	06/20/2001	6020
Cadmium	0.500	< 0.500	mg/Kg	06/20/2001	6020
Chromium	0.500	19.7	mg/Kg	06/20/2001	6020
Lead	0.500	30.4	mg/Kg	06/20/2001	6020
Mercury	0.040	< 0.040	mg/Kg	06/19/2001	7471A
Selenium	1.00	< 1.00	mg/Kg	06/20/2001	6020
Silver	0.500	< 0.500	mg/Kg	06/20/2001	6020

Analytical Report

Client:

Burns and McDonnell

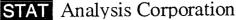
Project ID:

27194-3.02, Rogers Park Main

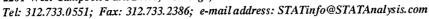
Sample Number:

RPM-SB076-002

STAT Project No.: 702045


STAT Sample No.: 918698

Date Received: 06/14/2001


Date Taken: 06/14/2001

Time Taken: 1420

1			
Analyte	Detection Limit	Result	Units
Solids, Total		83.03	%
Volatile Organic Compounds Metho	d 5035/8260B		
Analysis Date: 06/20/2001			
Acetone	0.025	< 0.025	mg/Kg
Benzene	0.005	< 0.005	mg/Kg
Bromodichloromethane	0.005	< 0.005	mg/Kg
Bromoform	0.005	< 0.005	mg/Kg
Bromomethane	0.010	< 0.010	mg/Kg
2-Butanone	0.010	< 0.010	mg/Kg
Carbon Disulfide	0.005	< 0.005	mg/Kg
Carbon Tetrachloride	0.005	< 0.005	mg/Kg
Chlorobenzene	0.005	< 0.005	mg/Kg
Chlorodibromomethane	0.005	< 0.005	mg/Kg
Chloroethane	0.010	< 0.010	mg/Kg
Chloroform	0.005	< 0.005	mg/Kg
Chloromethane	0.010	< 0.010	mg/Kg
1,1-Dichloroethane	0.005	< 0.005	mg/Kg
1,2-Dichloroethane	0.005	< 0.005	mg/Kg
1,1-Dichloroethene	0.005	< 0.005	mg/Kg
cis-1,2-Dichloroethene	0.005	< 0.005	mg/Kg
trans-1,2-Dichloroethene	0.005	< 0.005	mg/Kg
1,2-Dichloropropane	0.005	< 0.005	mg/Kg
cis-1,3-Dichloropropene	0.005	< 0.005	mg/Kg
trans-1,3-Dichloropropene	0.005	< 0.005	mg/Kg
Ethyl Benzene	0.005	< 0.005	mg/Kg
2-Hexanone	0.010	< 0.010	mg/Kg
4-Methyl-2-pentanone	0.010	< 0.010	mg/Kg
Methylene Chloride	0.010	< 0.010	mg/Kg
Styrene	0.005	< 0.005	mg/Kg
1,1,2,2-Tetrachloroethane	0.005	< 0.005	mg/Kg
Tetrachloroethene	0.005	< 0.005	mg/Kg
Toluene	0.005	< 0.005	mg/Kg
1,1,1-Trichloroethane	0.005	< 0.005	mg/Kg
1,1,2-Trichloroethane	0.005	< 0.005	mg/Kg
Trichloroethene	0.005	< 0.005	mg/Kg

STAT Analysis Corporation:
2201 West Campbell Park Drive, Chicago, Illinois 60612-3547

Analytical Report

Client:

Burns and McDonnell

Project ID:

27194-3.02, Rogers Park Main

Sample Number:

RPM-SB076-002

STAT Project No.: 702045

STAT Sample No.: 918698

Date Received: 06/14/2001

Date Taken: 06/14/2001

Time Taken: 1420

Analyte	Detection Limit	Result	Units
Vinyl Acetate	0.010	< 0.010	mg/Kg
Vinyl Chloride	0.010	< 0.010	mg/Kg
Xylenes (total)	0.005	< 0.005	mg/Kg
Polynuclear Aromatic Hydrocarbons	s Method 8270C		
Preparation Date: 06/15/2001			
Analysis Date: 06/17/2001			
Naphthalene	0.025	< 0.025	mg/Kg
Acenapthylene	0.025	< 0.025	mg/Kg
Acenaphthene	0.025	< 0.025	mg/Kg
Fluorene	0.025	< 0.025	mg/Kg
Phenanthrene	0.025	< 0.025	mg/Kg
Anthracene	0.025	< 0.025	mg/Kg
Fluoranthene	0.025	< 0.025	mg/Kg
Pyrene	0.025	< 0.025	mg/Kg
Chrysene	0.025	< 0.025	mg/Kg
Benzo[a]anthracene	0.025	< 0.025	mg/Kg
Benzo[b]fluoranthene	0.025	< 0.025	mg/Kg
Benzo[k]fluoranthene	0.025	< 0.025	mg/Kg
Benzo[a]pyrene	0.025	< 0.025	mg/Kg
Indeno[1,2,3-cd]pyrene	0.025	< 0.025	mg/Kg
Dibenz[a,h]anthracene	0.025	< 0.025	mg/Kg
Benzo[g,h,i]perylene	0.025	< 0.025	mg/Kg

Analytical Report

Client:

Burns and McDonnell

Project ID:

27194-3.02, Rogers Park Main

Sample Number:

RPM-SB076-002

STAT Project No.: 702045

STAT Sample No.: 918698

Date Received: 06/14/2001

Date Taken: 06/14/2001

Time Taken: 1420

Analyte	Detection Limit	Result	Units	Date Analyzed	Method
Solids, Total		83.03	%	06/20/2001	160.3
Total Cyanide	0.25	< 0.25	mg/Kg	06/18/2001	9010B/9014
RCRA Metals					
Arsenic	0.050	3.46	mg/Kg	06/20/2001	6020
Barium	0.500	54.8	mg/Kg	06/20/2001	6020
Cadmium	0.500	< 0.500	mg/Kg	06/20/2001	6020
Chromium	0.500	21.3	mg/Kg	06/20/2001	6020
Lead	0.500	12.0	mg/Kg	06/20/2001	6020
Mercury	0.040	< 0.040	mg/Kg	06/19/2001	7471A
Selenium	1.00	< 1.00	mg/Kg	06/20/2001	6020
Silver	0.500	< 0.500	mg/Kg	06/20/2001	6020

Analytical Report

Client:

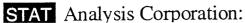
Burns and McDonnell

Project ID:

27194-3.02, Rogers Park Main

Sample Number:

RPM-SB077-001


STAT Project No.: 702045

STAT Sample No.: 918695

Date Received: 06/14/2001

Date Taken: 06/14/2001 Time Taken: 1150

Analyte	Detection Limit	Result	Units
Solids, Total		90.43	%
Volatile Organic Compounds Metho	d 5035/8260B		
Analysis Date: 06/20/2001			
Acetone	0.025	< 0.025	mg/Kg
Benzene	0.005	< 0.005	mg/Kg
Bromodichloromethane	0005	< 0.005	mg/Kg
Bromoform	0.005	< 0.005	mg/Kg
Bromomethane	0.010	< 0.010	mg/Kg
2-Butanone	0.010	< 0.010	mg/Kg
Carbon Disulfide	0.005	< 0.005	mg/Kg
Carbon Tetrachloride	0.005	< 0.005	mg/Kg
Chlorobenzene	0.005	< 0.005	mg/Kg
Chlorodibromomethane	0.005	< 0.005	mg/Kg
Chloroethane	0.010	< 0.010	mg/Kg
Chloroform	0.005	< 0.005	mg/Kg
Chloromethane	0.010	< 0.010	mg/Kg
1,1-Dichloroethane	0.005	< 0.005	mg/Kg
1,2-Dichloroethane	0.005	< 0.005	mg/Kg
1,1-Dichloroethene	0.005	< 0.005	mg/Kg
cis-1,2-Dichloroethene	0.005	< 0.005	mg/Kg
trans-1,2-Dichloroethene	0.005	< 0.005	mg/Kg
1,2-Dichloropropane	0.005	< 0.005	mg/Kg
cis-1,3-Dichloropropene	0.005	< 0.005	mg/Kg
trans-1,3-Dichloropropene	0.005	< 0.005	mg/Kg
Ethyl Benzene	0.005	< 0.005	mg/Kg
2-Hexanone	0.010	< 0.010	mg/Kg
4-Methyl-2-pentanone	0.010	< 0.010	mg/Kg
Methylene Chloride	0.010	< 0.010	mg/Kg
Styrene	0.005	< 0.005	mg/Kg
1,1,2,2-Tetrachloroethane	0.005	< 0.005	mg/Kg
Tetrachloroethene	0.005	< 0.005	mg/Kg
Toluene	0.005	< 0.005	mg/Kg
1,1,1-Trichloroethane	0.005	< 0.005	mg/Kg
1,1,2-Trichloroethane	0.005	< 0.005	mg/Kg
Trichloroethene	0.005	< 0.005	mg/Kg

2201 West Campbell Park Drive, Chicago, Illinois 60612-3547

Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

Analytical Report

Client:

Burns and McDonnell

Project ID:

27194-3.02, Rogers Park Main

Sample Number:

RPM-SB077-001

STAT Project No.: 702045

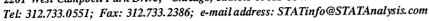
STAT Sample No.: 918695

Date Received: 06/14/2001

Date Taken: 06/14/2001

Time Taken: 1150

Date Reported: 06/22/2001


Analyte	Detection Limit	Result	Units
Vinyl Acetate	0.010	< 0.010	mg/Kg
Vinyl Chloride	0.010	< 0.010	mg/Kg
Xylenes (total)	0.005	< 0.005	mg/Kg
Polynuclear Aromatic Hydrocarbon	s Method 8270C		
Preparation Date: 06/15/2001			
Analysis Date: 06/17/2001			
Naphthalene	0.025	< 0.025	mg/Kg
Acenapthylene	0.025	< 0.025	mg/Kg
Acenaphthene	0.025	< 0.025	mg/Kg
Fluorene	0.025	< 0.025	mg/Kg
Phenanthrene	0.025	< 0.025	mg/Kg
Anthracene	0.025	< 0.025	mg/Kg
Fluoranthene	0.025	0.046	mg/Kg
Pyrene	0.025	0.044	mg/Kg
Chrysene	0.025	0.030	mg/Kg
Benzo[a]anthracene	0.025	0.025	mg/Kg
Benzo[b]fluoranthene	0.025	0.030	mg/Kg
Benzo[k]fluoranthene	0.025	< 0.025	mg/Kg
Benzo[a]pyrene	0.025	< 0.025	mg/Kg
Indeno[1,2,3-cd]pyrene	0.025	< 0.025	mg/Kg
Dibenz[a,h]anthracene	0.025	< 0.025	mg/Kg
Benzo[g,h,i]perylene	0.025	< 0.025	mg/Kg

PCBs Method 8082

06/15/2001 Preparation Date: Analysis Date: 06/15/2001

mg/Kg 0.080 < 0.080 Aroclor 1016 mg/Kg < 0.080 0.080 Aroclor 1221

Analytical Report

Client:

Burns and McDonnell

Project ID:

27194-3.02, Rogers Park Main

Sample Number:

RPM-SB077-001

STAT Project No.: 702045

STAT Sample No.: 918695

Date Received: 06/14/2001

Date Taken: 06/14/2001

Time Taken: 1150

Analyte	Detection Limit	Result	Units
Aroclor 1232	0.080	< 0.080	mg/Kg
Aroclor 1242	0.080	< 0.080	mg/Kg
Aroclor 1248	0.080	< 0.080	mg/Kg
Aroclor 1254	0.160	< 0.160	mg/Kg
Aroclor 1260	0.160	< 0.160	mg/Kg

Analytical Report

Client:

Burns and McDonnell

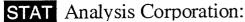
Project ID:

27194-3.02, Rogers Park Main

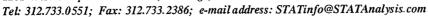
Sample Number:

RPM-SB077-001

STAT Project No.: 702045


STAT Sample No.: 918695

Date Received: 06/14/2001


Date Taken: 06/14/2001

Time Taken: 1150

Analyte	Detection Limit	Result	Units	Date Analyzed	Method
Solids, Total		90.43	%	06/20/2001	160.3
Total Cyanide	0.25	< 0.25	mg/Kg	06/18/2001	9010B/9014
RCRA Metals					
Arsenic	0.050	5.45	mg/Kg	06/20/2001	6020
Barium	0.500	16.3	mg/Kg	06/20/2001	6020
Cadmium	0.500	< 0.500	mg/Kg	06/20/2001	6020
Chromium	0.500	6.54	mg/Kg	06/20/2001	6020
Lead	0.500	237	mg/Kg	06/20/2001	6020
Mercury	0.040	0.530	mg/Kg	06/19/2001	7471A
Selenium	1.00	< 1.00	mg/Kg	06/20/2001	6020
Silver	0.500	< 0.500	mg/Kg	06/20/2001	6020

2201 West Campbell Park Drive, Chicago, Illinois 60612-3547

Analytical Report

Client:

Burns and McDonnell

Project ID:

27194-3.02, Rogers Park Main

Sample Number:

RPM-SB077-002

STAT Project No.: 702045

STAT Sample No.: 918696

Date Reported: 06/22/2001

Date Received: 06/14/2001 Date Taken: 06/14/2001

Time Taken: 1200

-			T T 1.
Analyte	Detection Limit	Result	Units
Solids, Total		80.98	%
Volatile Organic Compounds Metho	d 5035/8260B		
Analysis Date: 06/20/2001			
Acetone	0.025	< 0.025	mg/Kg
Benzene	0.005	< 0.005	mg/Kg
Bromodichloromethane	0.005	< 0.005	mg/Kg
Bromoform	0.005	< 0.005	mg/Kg
Bromomethane	0.010	< 0.010	mg/Kg
2-Butanone	0.010	< 0.010	mg/Kg
Carbon Disulfide	0.005	< 0.005	mg/Kg
Carbon Tetrachloride	0.005	< 0.005	mg/Kg
Chlorobenzene	0.005	< 0.005	mg/Kg
Chlorodibromomethane	0.005	< 0.005	mg/Kg
Chloroethane	0.010	< 0.010	mg/Kg
Chloroform	0.005	< 0.005	mg/Kg
Chloromethane	0.010	< 0.010	mg/Kg
1,1-Dichloroethane	0.005	< 0.005	mg/Kg
1,2-Dichloroethane	0.005	< 0.005	mg/Kg
1,1-Dichloroethene	0.005	< 0.005	mg/Kg
cis-1,2-Dichloroethene	0.005	< 0.005	mg/Kg
trans-1,2-Dichloroethene	0.005	< 0.005	mg/Kg
1,2-Dichloropropane	0.005	< 0.005	mg/Kg
cis-1,3-Dichloropropene	0.005	< 0.005	mg/Kg
trans-1,3-Dichloropropene	0.005	< 0.005	mg/Kg
Ethyl Benzene	0.005	< 0.005	mg/Kg
2-Hexanone	0.010	< 0.010	mg/Kg
4-Methyl-2-pentanone	0.010	< 0.010	mg/Kg
Methylene Chloride	0.010	< 0.010	mg/Kg
Styrene	0.005	< 0.005	mg/Kg
1,1,2,2-Tetrachloroethane	0.005	< 0.005	mg/Kg
Tetrachloroethene	0.005	< 0.005	mg/Kg
Toluene	0.005	< 0.005	mg/Kg
1,1,1-Trichloroethane	0.005	< 0.005	mg/Kg
1,1,2-Trichloroethane	0.005	< 0.005	mg/Kg
Trichloroethene	0.005	< 0.005	mg/Kg

Analytical Report

Client:

Burns and McDonnell

Project ID:

27194-3.02, Rogers Park Main

Sample Number:

RPM-SB077-002

STAT Project No.: 702045

STAT Sample No.: 918696

Date Received: 06/14/2001

Date Taken: 06/14/2001

Time Taken: 1200

Date Reported: 06/22/2001

Analyte	Detection Limit	Result	Units
Vinyl Acetate	0.010	< 0.010	mg/Kg
Vinyl Chloride	0.010	< 0.010	mg/Kg
Xylenes (total)	0.005	< 0.005	mg/Kg
Polynuclear Aromatic Hydrocarbons	Method 8270C		
Preparation Date: 06/15/2001			
Analysis Date: 06/17/2001			
Naphthalene	0.025	< 0.025	mg/Kg
Acenapthylene	0.025	< 0.025	mg/Kg
Acenaphthene	0.025	< 0.025	mg/Kg
Fluorene	0.025	< 0.025	mg/Kg
Phenanthrene	0.025	< 0.025	mg/Kg
Anthracene	0.025	< 0.025	mg/Kg
Fluoranthene	0.025	< 0.025	mg/Kg
Pyrene	0.025	< 0.025	mg/Kg
Chrysene	0.025	< 0.025	mg/Kg
Benzo[a]anthracene	0.025	< 0.025	mg/Kg
Benzo[b]fluoranthene	0.025	< 0.025	mg/Kg
Benzo[k]fluoranthene	0.025	< 0.025	mg/Kg
Benzo[a]pyrene	0.025	< 0.025	mg/Kg
Indeno[1,2,3-cd]pyrene	0.025	< 0.025	mg/Kg
Dibenz[a,h]anthracene	0.025	< 0.025	mg/Kg
Benzo[g,h,i]perylene	0.025	< 0.025	mg/Kg

PCBs Method 8082

Preparation Date: 06/15/2001 06/15/2001 Analysis Date:

mg/Kg < 0.080 Aroclor 1016 0.080mg/Kg < 0.080 0.080 Aroclor 1221

Analytical Report

Client:

Burns and McDonnell

Project ID:

27194-3.02, Rogers Park Main

Sample Number:

RPM-SB077-002

STAT Project No.: 702045 STAT Sample No.: 918696

Date Received: 06/14/2001 Date Taken: 06/14/2001

Time Taken: 1200

Analyte	Detection Limit	Result	Units
Aroclor 1232	0.080	< 0.080	mg/Kg
Aroclor 1242	0.080	< 0.080	mg/Kg
Aroclor 1248	0.080	< 0.080	mg/Kg
Aroclor 1254	0.160	< 0.160	mg/Kg
Aroclor 1260	0.160	< 0.160	mg/Kg

Analytical Report

Client:

Burns and McDonnell

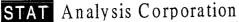
Project ID:

27194-3.02, Rogers Park Main

Sample Number:

RPM-SB077-002

STAT Project No.: 702045


STAT Sample No.: 918696

Date Received: 06/14/2001

Date Taken: 06/14/2001

Time Taken: 1200

Analyte	Detection Limit	Result	Units	Date Analyzed	Method
Solids, Total		80.98	%	06/20/2001	160.3
Total Cyanide	0.25	< 0.25	mg/Kg	06/18/2001	9010B/9014
RCRA Metals					
Arsenic	0.050	9.81	mg/Kg	06/20/2001	6020
Barium	0.500	56.9	mg/Kg	06/20/2001	6020
Cadmium	0.500	< 0.500	mg/Kg	06/20/2001	6020
Chromium	0.500	21.9	mg/Kg	06/20/2001	6020
Lead	0.500	14.1	mg/Kg	06/20/2001	6020
Mercury	0.040	< 0.040	mg/Kg	06/19/2001	7471A
Selenium	1.00	< 1.00	mg/Kg	06/20/2001	6020
Silver	0.500	< 0.500	mg/Kg	06/20/2001	6020

Analytical Report

Client:

Burns and McDonnell

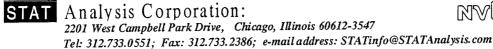
Project ID:

27194-3.02, Rogers Park Main

Sample Number:

RPM-SB078-001

STAT Project No.: 702045


STAT Sample No.: 918699

Date Received: 06/14/2001

Date Taken: 06/14/2001

Time Taken: 1125

Analyte	Detection Limit	Result	Units
Solids, Total		83.61	%
Volatile Organic Compounds Metho	d 5035/8260B		
Analysis Date: 06/20/2001	-		
Acetone	0.025	< 0.025	mg/Kg
Benzene	0.005	< 0.005	mg/Kg
Bromodichloromethane	0.005	< 0.005	mg/Kg
Bromoform	0.005	< 0.005	mg/Kg
Bromomethane	0.010	< 0.010	mg/Kg
2-Butanone	0.010	< 0.010	mg/Kg
Carbon Disulfide	0.005	< 0.005	mg/Kg
Carbon Tetrachloride	0.005	< 0.005	mg/Kg
Chlorobenzene	0.005	< 0.005	mg/Kg
Chlorodibromomethane	0.005	< 0.005	mg/Kg
Chloroethane	0.010	< 0.010	mg/Kg
Chloroform	0.005	< 0.005	mg/Kg
Chloromethane	0.010	< 0.010	mg/Kg
1,1-Dichloroethane	0.005	< 0.005	mg/Kg
1,2-Dichloroethane	0.005	< 0.005	mg/Kg
1,1-Dichloroethene	0.005	< 0.005	mg/Kg
cis-1,2-Dichloroethene	0.005	< 0.005	mg/Kg
trans-1,2-Dichloroethene	0.005	< 0.005	mg/Kg
1,2-Dichloropropane	0.005	< 0.005	mg/Kg
cis-1,3-Dichloropropene	0.005	< 0.005	mg/Kg
trans-1,3-Dichloropropene	0.005	< 0.005	mg/Kg
Ethyl Benzene	0.005	< 0.005	mg/Kg
2-Hexanone	0.010	< 0.010	mg/Kg
4-Methyl-2-pentanone	0.010	< 0.010	mg/Kg
Methylene Chloride	0.010	< 0.010	mg/Kg
Styrene	0.005	< 0.005	mg/Kg
1,1,2,2-Tetrachloroethane	0.005	< 0.005	mg/Kg
Tetrachloroethene	0.005	< 0.005	mg/Kg
Toluene	0.005	< 0.005	mg/Kg
1,1,1-Trichloroethane	0.005	< 0.005	mg/Kg
1,1,2-Trichloroethane	0.005	< 0.005	mg/Kg

Analytical Report

Client:

Burns and McDonnell

Project ID:

27194-3.02, Rogers Park Main

Sample Number:

RPM-SB078-001

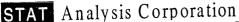
STAT Project No.: 702045

STAT Sample No.: 918699

Date Received: 06/14/2001

Date Taken: 06/14/2001

Time Taken: 1125


Date Reported: 06/22/2001

Analyte	Detection Limit	Result	Units
Trichloroethene	0.005	< 0.005	mg/Kg
Vinyl Acetate	0.010	< 0.010	mg/Kg
Vinyl Chloride	0.010	< 0.010	mg/Kg
Xylenes (total)	0.005	< 0.005	mg/Kg
Polynuclear Aromatic Hydrocarbon	s Method 8270C		
Preparation Date: 06/15/2001			
Analysis Date: 06/17/2001			
Naphthalene	0.025	< 0.025	mg/Kg
Acenapthylene	0.025	0.059	mg/Kg
Acenaphthene	0.025	< 0.025	mg/Kg
Fluorene	0.025	< 0.025	mg/Kg
Phenanthrene	0.025	0.032	mg/Kg
Anthracene	0.025	< 0.025	mg/Kg
Fluoranthene	0.025	0.087	mg/Kg
Pyrene	0.025	0.117	mg/Kg
Chrysene	0.025	0.110	mg/Kg
Benzo[a]anthracene	0.025	0.097	mg/Kg
Benzo[b]fluoranthene	0.025	0.080	mg/Kg
Benzo[k]fluoranthene	0.025	0.072	mg/Kg
Benzo[a]pyrene	0.025	0.093	mg/Kg
Indeno[1,2,3-cd]pyrene	0.025	0.056	mg/Kg
Dibenz[a,h]anthracene	0.025	< 0.025	mg/Kg
Benzo[g,h,i]perylene	0.025	0.066	mg/Kg

PCBs Method 8082

Preparation Date: 06/15/2001 Analysis Date:

06/15/2001

Analytical Report

Client:

Burns and McDonnell

Project ID:

27194-3.02, Rogers Park Main

Sample Number:

RPM-SB078-001

STAT Project No.: 702045

STAT Sample No.: 918699

Date Received: 06/14/2001

Date Taken: 06/14/2001

Time Taken: 1125

Analyte	Detection Limit	Result	Units
Aroclor 1016	0.080	< 0.080	mg/Kg
Aroclor 1221	0.080	< 0.080	mg/Kg
Aroclor 1232	0.080	< 0.080	mg/Kg
Aroclor 1242	0.080	< 0.080	mg/Kg
Aroclor 1248	0.080	< 0.080	mg/Kg
Aroclor 1254	0.160	< 0.160	mg/Kg
Aroclor 1260	0.160	< 0.160	mg/Kg
Arociol 1200			

Analytical Report

Client:

Burns and McDonnell

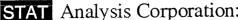
Project ID:

27194-3.02, Rogers Park Main

Sample Number:

RPM-SB078-001

STAT Project No.: 702045


STAT Sample No.: 918699

Date Received: 06/14/2001

Date Taken: 06/14/2001

Time Taken: 1125

Analyte	Detection Limit	Result	Units	Date Analyzed	Method
Solids, Total		83.61	%	06/20/2001	160.3
Total Cyanide	0.25	< 0.25	mg/Kg	06/18/2001	9010B/9014
RCRA Metals					
Arsenic	0.050	2.47	mg/Kg	06/20/2001	6020
Barium	0.500	61.0	mg/Kg	06/20/2001	6020
Cadmium	0.500	< 0.500	mg/Kg	06/20/2001	6020
Chromium	0.500	20.4	mg/Kg	06/20/2001	6020
Lead	0.500	19.0	mg/Kg	06/20/2001	6020
Mercury	0.040	< 0.040	mg/Kg	06/19/2001	7471A
Selenium	1.00	< 1.00	mg/Kg	06/20/2001	6020
Silver	0.500	< 0.500	mg/Kg	06/20/2001	6020

Analytical Report

Client:

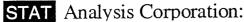
Burns and McDonnell

Project ID:

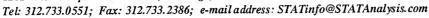
27194-3.02, Rogers Park Main

Sample Number:

RPM-SB078-002


STAT Sample No.: 918700

STAT Project No.: 702045


Date Received: 06/14/2001 Date Taken: 06/14/2001

Time Taken: 1140

F			
Analyte	Detection Limit	Result	Units
Solids, Total		82.88	%
Volatile Organic Compounds Meth	od 5035/8260B		
Analysis Date: 06/20/2001			
Acetone	0.025	< 0.025	mg/Kg
Benzene	0.005	< 0.005	mg/Kg
Bromodichloromethane	0.005	< 0.005	mg/Kg
Bromoform	0.005	< 0.005	mg/Kg
Bromomethane	0.010	< 0.010	mg/Kg
2-Butanone	0.010	< 0.010	mg/Kg
Carbon Disulfide	0.005	< 0.005	mg/Kg
Carbon Tetrachloride	0.005	< 0.005	mg/Kg
Chlorobenzene	0.005	< 0.005	mg/Kg
Chlorodibromomethane	0.005	< 0.005	mg/Kg
Chloroethane	0.010	< 0.010	mg/Kg
Chloroform	0.005	< 0.005	mg/Kg
Chloromethane	0.010	< 0.010	mg/Kg
1,1-Dichloroethane	0.005	< 0.005	mg/Kg
1,2-Dichloroethane	0.005	< 0.005	mg/Kg
1,1-Dichloroethene	0.005	< 0.005	mg/Kg
cis-1,2-Dichloroethene	0.005	< 0.005	mg/Kg
trans-1,2-Dichloroethene	0.005	< 0.005	mg/Kg
1,2-Dichloropropane	0.005	< 0.005	mg/Kg
cis-1,3-Dichloropropene	0.005	< 0.005	mg/Kg
trans-1,3-Dichloropropene	0.005	< 0.005	mg/Kg
Ethyl Benzene	0.005	< 0.005	mg/Kg
2-Hexanone	0.010	< 0.010	mg/Kg
4-Methyl-2-pentanone	0.010	< 0.010	mg/Kg
Methylene Chloride	0.010	< 0.010	mg/Kg
Styrene	0.005	< 0.005	mg/Kg
1,1,2,2-Tetrachloroethane	0.005	< 0.005	mg/Kg
Tetrachloroethene	0.005	< 0.005	mg/Kg
Toluene	0.005	< 0.005	mg/Kg
1,1,1-Trichloroethane	0.005	< 0.005	mg/Kg
1,1,2-Trichloroethane	0.005	< 0.005	mg/Kg
Trichloroethene	0.005	< 0.005	mg/Kg
And the second of the second o			

2201 West Campbell Park Drive, Chicago, Illinois 60612-3547

Analytical Report

Client:

Burns and McDonnell

Project ID:

27194-3.02, Rogers Park Main

Sample Number:

STAT Project No.: 702045

STAT Sample No.: 918700

RPM-SB078-002

Date Received: 06/14/2001 Date Taken: 06/14/2001

Time Taken: 1140

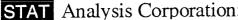
Date Reported: 06/22/2001

Analyte	Detection Limit	Result	Units
Vinyl Acetate	0.010	< 0.010	mg/Kg
Vinyl Chloride	0.010	< 0.010	mg/Kg
Xylenes (total)	0.005	< 0.005	mg/Kg
Polynuclear Aromatic Hydrocarbon	s Method 8270C		
Preparation Date: 06/15/2001			
Analysis Date: 06/17/2001			
Naphthalene	0.025	< 0.025	mg/Kg
Acenapthylene	0.025	< 0.025	mg/Kg
Acenaphthene	0.025	< 0.025	mg/Kg
Fluorene	0.025	< 0.025	mg/Kg
Phenanthrene	0.025	0.026	mg/Kg
Anthracene	0.025	< 0.025	mg/Kg
Fluoranthene	0.025	0.052	mg/Kg
Pyrene	0.025	0.043	mg/Kg
Chrysene	0.025	0.029	mg/Kg
Benzo[a]anthracene	0.025	< 0.025	mg/Kg
Benzo[b]fluoranthene	0.025	< 0.025	mg/Kg
Benzo[k]fluoranthene	0.025	< 0.025	mg/Kg
Benzo[a]pyrene	0.025	< 0.025	mg/Kg
Indeno[1,2,3-cd]pyrene	0.025	< 0.025	mg/Kg
Dibenz[a,h]anthracene	0.025	< 0.025	mg/Kg
Benzo[g,h,i]perylene	0.025	< 0.025	mg/Kg

PCBs Method 8082

Preparation Date:

06/15/2001


Analysis Date:

06/15/2001

Aroclor 1016 Aroclor 1221 0.080

0.080

< 0.080 < 0.080 mg/Kg mg/Kg

STAT Analysis Corporation:
2201 West Campbell Park Drive, Chicago, Illinois 60612-3547

Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

Analytical Report

Client:

Burns and McDonnell

Project ID:

27194-3.02, Rogers Park Main

Sample Number:

RPM-SB078-002

STAT Project No.: 702045

STAT Sample No.: 918700

Date Received: 06/14/2001

Date Taken: 06/14/2001

Time Taken: 1140

Analyte	Detection Limit	Result	Units
Aroclor 1232	0.080	< 0.080	mg/Kg
Aroclor 1242	0.080	< 0.080	mg/Kg
Aroclor 1248	0.080	< 0.080	mg/Kg
Aroclor 1254	0.160	< 0.160	mg/Kg
Aroclor 1260	0.160	< 0.160	mg/Kg

Analytical Report

Client:

Burns and McDonnell

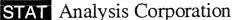
Project ID:

27194-3.02, Rogers Park Main

Sample Number:

RPM-SB078-002

STAT Project No.: 702045


STAT Sample No.: 918700

Time Taken: 1140 Date Reported: 06/22/2001

Date Received: 06/14/2001

Date Taken: 06/14/2001

Analyte	Detection Limit	Result	Units	Date Analyzed	Method
Solids, Total		82.88	%	06/20/2001	160.3
Total Cyanide	0.25	< 0.25	mg/Kg	06/18/2001	9010B/9014
RCRA Metals					
Arsenic	0.050	12.8	mg/Kg	06/20/2001	6020
Barium	0.500	47.1	mg/Kg	06/20/2001	6020
Cadmium	0.500	< 0.500	mg/Kg	06/20/2001	6020
Chromium	0.500	21.9	mg/Kg	06/20/2001	6020
Lead	0.500	17.7	mg/Kg	06/20/2001	6020
Mercury	0.040	< 0.040	mg/Kg	06/19/2001	7471A
Selenium	1.00	< 1.00	mg/Kg	06/20/2001	6020
Silver	0.500	< 0.500	mg/Kg	06/20/2001	6020

Analytical Report

Client:

Burns and McDonnell

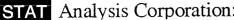
Project ID:

27194-3.02, Rogers Park Main

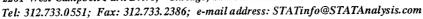
Sample Number:

RPM-SB079-001

STAT Project No.: 702045


STAT Sample No.: 918701

Date Received: 06/14/2001


Date Taken: 06/14/2001

Time Taken: 1240

Analyte	Detection Limit	Result	Units
Solids, Total		92.84	%
Volatile Organic Compounds Metho	od 5035/8260B		
Analysis Date: 06/20/2001			
Acetone	0.025	< 0.025	mg/Kg
Benzene	0.005	< 0.005	mg/Kg
Bromodichloromethane	0.005	< 0.005	mg/Kg
Bromoform	0.005	< 0.005	mg/Kg
Bromomethane	0.010	< 0.010	mg/Kg
2-Butanone	0.010	< 0.010	mg/Kg
Carbon Disulfide	0.005	< 0.005	mg/Kg
Carbon Tetrachloride	0.005	< 0.005	mg/Kg
Chlorobenzene	0.005	< 0.005	mg/Kg
Chlorodibromomethane	0.005	< 0.005	mg/Kg
Chloroethane	0.010	< 0.010	mg/Kg
Chloroform	0.005	< 0.005	mg/Kg
Chloromethane	0.010	< 0.010	mg/Kg
1,1-Dichloroethane	0.005	< 0.005	mg/Kg
1,2-Dichloroethane	0.005	< 0.005	mg/Kg
1,1-Dichloroethene	0.005	< 0.005	mg/Kg
cis-1,2-Dichloroethene	0.005	< 0.005	mg/Kg
trans-1,2-Dichloroethene	0.005	< 0.005	mg/Kg
1,2-Dichloropropane	0.005	< 0.005	mg/Kg
cis-1,3-Dichloropropene	0.005	< 0.005	mg/Kg
trans-1,3-Dichloropropene	0.005	< 0.005	mg/Kg
Ethyl Benzene	0.005	< 0.005	mg/Kg
2-Hexanone	0.010	< 0.010	mg/Kg
4-Methyl-2-pentanone	0.010	< 0.010	mg/Kg
Methylene Chloride	0.010	< 0.010	mg/Kg
Styrene	0.005	< 0.005	mg/Kg
1,1,2,2-Tetrachloroethane	0.005	< 0.005	mg/Kg
Tetrachloroethene	0.005	< 0.005	mg/Kg
Toluene	0.005	< 0.005	mg/Kg
1,1,1-Trichloroethane	0.005	< 0.005	mg/Kg
1,1,2-Trichloroethane	0.005	< 0.005	mg/Kg
Trichloroethene	0.005	< 0.005	mg/Kg

STAT Analysis Corporation:
2201 West Campbell Park Drive, Chicago, Illinois 60612-3547

Analytical Report

Client:

Burns and McDonnell

Project ID:

27194-3.02, Rogers Park Main

Sample Number:

RPM-SB079-001

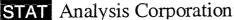
STAT Project No.: 702045

STAT Sample No.: 918701

Date Received: 06/14/2001

Date Taken: 06/14/2001

Time Taken: 1240


Date Reported: 06/22/2001

Analyte	Detection Limit	Result	Units
Vinyl Acetate	0.010	< 0.010	mg/Kg
Vinyl Chloride	0.010	< 0.010	mg/Kg
Xylenes (total)	0.005	< 0.005	mg/Kg
Polynuclear Aromatic Hydrocarbon	s Method 8270C		
Preparation Date: 06/15/2001			
Analysis Date: 06/17/2001			
Naphthalene	0.025	< 0.025	mg/Kg
Acenapthylene	0.025	< 0.025	mg/Kg
Acenaphthene	0.025	0.071	mg/Kg
Fluorene	0.025	0.036	mg/Kg
Phenanthrene	0.025	0.124	mg/Kg
Anthracene	0.025	0.077	mg/Kg
Fluoranthene	0.025	0.271	mg/Kg
Pyrene	0.025	0.230	mg/Kg
Chrysene	0.025	0.149	mg/Kg
Benzo[a]anthracene	0.025	0.134	mg/Kg
Benzo[b]fluoranthene	0.025	0.077	mg/Kg
Benzo[k]fluoranthene	0.025	0.108	mg/Kg
Benzo[a]pyrene	0.025	0.115	mg/Kg
Indeno[1,2,3-cd]pyrene	0.025	0.088	mg/Kg
Dibenz[a,h]anthracene	0.025	0.045	mg/Kg
Benzo[g,h,i]perylene	0.025	0.099	mg/Kg

PCBs Method 8082

Preparation Date: 06/15/2001 06/15/2001 Analysis Date:

Aroclor 1016	0.080	< 0.080	mg/Kg
Aroclor 1221	0.080	< 0.080	mg/Kg
Aroclor 1232	0.080	< 0.080	mg/Kg

Analytical Report

Client:

Burns and McDonnell

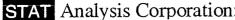
Project ID:

27194-3.02, Rogers Park Main

Sample Number:

RPM-SB079-001

STAT Project No.: 702045


STAT Sample No.: 918701

Date Received: 06/14/2001

Date Taken: 06/14/2001

Time Taken: 1240

Analyte	Detection Limit	Result	Units
Aroclor 1242	0.080	< 0.080	mg/Kg
Aroclor 1248	0.080	< 0.080	mg/Kg
Aroclor 1254	0.160	< 0.160	mg/Kg
Aroclor 1260	0.160	< 0.160	mg/Kg

Analytical Report

Client:

Burns and McDonnell

Project ID:

27194-3.02, Rogers Park Main

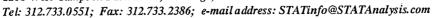
Sample Number:

RPM-SB079-001

STAT Project No.: 702045

STAT Sample No.: 918701

Date Received: 06/14/2001


Date Taken: 06/14/2001

Time Taken: 1240

Analyte	Detection Limit	Result	Units	Date Analyzed	Method
Solids, Total		92.84	%	06/20/2001	160.3
Total Cyanide	0.25	< 0.25	mg/Kg	06/18/2001	9010B/9014
RCRA Metals					
Arsenic	0.050	6.19	mg/Kg	06/20/2001	6020
Barium	0.500	19.7	mg/Kg	06/20/2001	6020
Cadmium	0.500	< 0.500	mg/Kg	06/20/2001	6020
Chromium	0.500	26.0	mg/Kg	06/20/2001	6020
Lead	0.500	26.4	mg/Kg	06/20/2001	6020
Mercury	0.040	< 0.040	mg/Kg	06/19/2001	7471A
Selenium	1.00	< 1.00	mg/Kg	06/20/2001	6020
Silver	0.500	< 0.500	mg/Kg	06/20/2001	6020

STAT Analysis Corporation:
2201 West Campbell Park Drive, Chicago, Illinois 60612-3547

Analytical Report

Client:

Burns and McDonnell

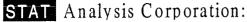
Project ID:

27194-3.02, Rogers Park Main

Sample Number:

RPM-SB079-002

STAT Sample No.: 918702


STAT Project No.: 702045

Date Received: 06/14/2001

Date Taken: 06/14/2001

Time Taken: 1308

Analyte	Detection Limit	Result	Units
Solids, Total		80.11	%
Volatile Organic Compounds Metho	od 5035/8260B		
Analysis Date: 06/20/2001			
Acetone	0.025	0.212	mg/Kg
Benzene	0.005	< 0.005	mg/Kg
Bromodichloromethane	0.005	< 0005	mg/Kg
Bromoform	0.005	< 0.005	mg/Kg
Bromomethane	0.010	< 0.010	mg/Kg
2-Butanone	0.010	0.081	mg/Kg
Carbon Disulfide	0.005	< 0.005	mg/Kg
Carbon Tetrachloride	0.005	< 0.005	mg/Kg
Chlorobenzene	0.005	< 0.005	mg/Kg
Chlorodibromomethane	0.005	< 0.005	mg/Kg
Chloroethane	0.010	< 0.010	mg/Kg
Chloroform	0.005	< 0.005	mg/Kg
Chloromethane	0.010	< 0.010	mg/Kg
1,1-Dichloroethane	0.005	< 0.005	mg/Kg
1,2-Dichloroethane	0.005	< 0.005	mg/Kg
1,1-Dichloroethene	0.005	< 0.005	mg/Kg
cis-1,2-Dichloroethene	0.005	< 0.005	mg/Kg
trans-1,2-Dichloroethene	0.005	< 0.005	mg/Kg
1,2-Dichloropropane	0.005	< 0.005	mg/Kg
cis-1,3-Dichloropropene	0.005	< 0.005	mg/Kg
trans-1,3-Dichloropropene	0.005	< 0.005	mg/Kg
Ethyl Benzene	0.005	< 0.005	mg/Kg
2-Hexanone	0.010	< 0.010	mg/Kg
4-Methyl-2-pentanone	0.010	< 0.010	mg/Kg
Methylene Chloride	0.010	< 0.010	mg/Kg
Styrene	0.005	< 0.005	mg/Kg
1,1,2,2-Tetrachloroethane	0.005	< 0.005	mg/Kg
Tetrachloroethene	0.005	< 0.005	mg/Kg
Toluene	0.005	< 0.005	mg/Kg
1,1,1-Trichloroethane	0.005	< 0.005	mg/Kg
1,1,2-Trichloroethane	0.005	< 0.005	mg/Kg

2201 West Campbell Park Drive, Chicago, Illinois 60612-3547

Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

Analytical Report

Client:

Burns and McDonnell

Project ID:

27194-3.02, Rogers Park Main

Sample Number:

RPM-SB079-002

STAT Project No.: 702045

STAT Sample No.: 918702

Date Received: 06/14/2001

Date Taken: 06/14/2001

Time Taken: 1308

Date Reported: 06/22/2001

Analyte	Detection Limit	Result	Units
Trichloroethene	0.005	< 0.005	mg/Kg
Vinyl Acetate	0.010	< 0.010	mg/Kg
Vinyl Chloride	0.010	< 0.010	mg/Kg
Xylenes (total)	0.005	< 0.005	mg/Kg
Polynuclear Aromatic	Hydrocarbons Method 8270C		
•	5/2001		
Analysis Date: 06/1	7/2001		
Naphthalene	0.025	< 0.025	mg/Kg
Acenapthylene	0.025	0.050	mg/Kg
Acenaphthene	0.025	< 0.025	mg/Kg
Fluorene	0.025	< 0.025	mg/Kg
Phenanthrene	0.025	0.046	mg/Kg
Anthracene	0.025	0.051	mg/Kg
Fluoranthene	0.025	0.098	mg/Kg
Pyrene	0.025	0.101	mg/Kg
Chrysene	0.025	0.093	mg/Kg
Benzo[a]anthracene	0.025	0.087	mg/Kg
Benzo[b]fluoranthene	0.025	0.092	mg/Kg
Benzo[k]fluoranthene	0.025	0.072	mg/Kg
Benzo[a]pyrene	0.025	0.097	mg/Kg
Indeno[1,2,3-cd]pyrene	0.025	0.054	mg/Kg
Dibenz[a,h]anthracene	0.025	0.031	mg/Kg
Benzo[g,h,i]perylene	0.025	0.060	mg/Kg

PCBs Method 8082

Preparation Date: 06/15/2001

Analysis Date:

06/15/2001

Analysis Corporation:
2201 West Campbell Park Drive, Chicago, Illinois 60612-3547

Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

Analytical Report

Client:

Burns and McDonnell

Project ID:

27194-3.02, Rogers Park Main

Sample Number:

RPM-SB079-002

STAT Project No.: 702045

STAT Sample No.: 918702

Date Received: 06/14/2001

Date Taken: 06/14/2001

Time Taken: 1308

Analyte	Detection Limit	Result	Units
Aroclor 1016	0.080	< 0.080	mg/Kg
Aroclor 1221	0.080	< 0.080	mg/Kg
Aroclor 1232	0.080	< 0.080	mg/Kg
Aroclor 1242	0.080	< 0.080	mg/Kg
Aroclor 1248	0.080	< 0.080	mg/Kg
Aroclor 1254	0.160	< 0.160	mg/Kg
Aroclor 1260	0.160	< 0.160	mg/Kg

Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

Analytical Report

Client:

Burns and McDonnell

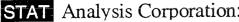
Project ID:

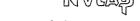
27194-3.02, Rogers Park Main

Sample Number:

RPM-SB079-002

STAT Project No.: 702045


STAT Sample No.: 918702


Date Received: 06/14/2001

Date Taken: 06/14/2001

Time Taken: 1308

Analyte	Detection Limit	Result	Units	Date Analyzed	Method
Solids, Total		80.11	%	06/20/2001	160.3
Total Cyanide	0.25	< 0.25	mg/Kg	06/18/2001	9010B/9014
RCRA Metals					
Arsenic	0.050	6.28	mg/Kg	06/20/2001	6020
Barium	0.500	78.8	mg/Kg	06/20/2001	6020
Cadmium	0.500	< 0.500	mg/Kg	06/20/2001	6020
Chromium	0.500	21.8	mg/Kg	06/20/2001	6020
Lead	0.500	65.7	mg/Kg	06/20/2001	6020
Mercury	0.040	< 0.040	mg/Kg	06/19/2001	7471A
Selenium	1.00	< 1.00	mg/Kg	06/20/2001	6020
Silver	0.500	< 0.500	mg/Kg	06/20/2001	6020

Analytical Report

Client:

Burns and McDonnell

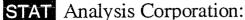
Project ID:

27194-3.02, Rogers Park Main

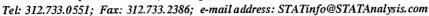
Sample Number:

RPM-SB080-001

STAT Project No.: 702045


STAT Sample No.: 918703

Date Received: 06/14/2001


Date Taken: 06/14/2001

Time Taken: 1220

Solids, Total 86.72 % Volatile Organic Compounds Method 5035/8260B Analysis Date: 06/20/2001 0.025 < 0.025 mg/Kg Benzene 0.005 < 0.005 mg/Kg Bromodichloromethane 0.005 < 0.005 mg/Kg Bromoform 0.005 < 0.005 mg/Kg Bromomethane 0.010 < 0.010 mg/Kg 2-Butanone 0.010 < 0.010 mg/Kg	Analyte	Detection Limit	Result	Units
Analysis Date: 06/20/2001 Acetone 0.025 < 0.025	Solids, Total		86.72	%
Analysis Date: 06/20/2001 Acetone 0.025 < 0.025	Volatile Organic Compounds Method	d 5035/8260B		
Benzene 0.005 < 0.005 mg/Kg Bromodichloromethane 0.005 < 0.005	_			
Bromodichloromethane 0.005 < 0.005 mg/Kg Bromoform 0.005 < 0.005	Acetone	0.025	< 0.025	mg/Kg
Bromoform 0.005 < 0.005 mg/Kg Bromomethane 0.010 < 0.010	Benzene	0.005	< 0.005	mg/Kg
Bromomethane 0.010 < 0.010 mg/Kg	Bromodichloromethane	0.005	< 0.005	mg/Kg
	Bromoform	0.005	< 0.005	mg/Kg
2-Butanone 0.010 < 0.010 mg/Kg	Bromomethane	0.010	< 0.010	mg/Kg
Z Butanone	2-Butanone	0.010	< 0.010	mg/Kg
Carbon Disulfide 0.005 < 0.005 mg/Kg	Carbon Disulfide	0.005	< 0.005	mg/Kg
Carbon Tetrachloride 0.005 < 0.005 mg/Kg	Carbon Tetrachloride	0.005	< 0.005	mg/Kg
Chlorobenzene 0.005 < 0.005 mg/Kg	Chlorobenzene	0.005	< 0.005	mg/Kg
Chlorodibromomethane 0.005 < 0.005 mg/Kg	Chlorodibromomethane	0.005	< 0.005	mg/Kg
Chloroethane $0.010 < 0.010 $ mg/Kg	Chloroethane	0.010	< 0.010	mg/Kg
Chloroform 0.005 < 0.005 mg/Kg	Chloroform	0.005	< 0.005	mg/Kg
Chloromethane 0.010 < 0.010 mg/Kg	Chloromethane	0.010	< 0.010	mg/Kg
1,1-Dichloroethane 0.005 < 0.005 mg/Kg	1,1-Dichloroethane	0.005	< 0.005	mg/Kg
1,2-Dichloroethane 0.005 < 0.005 mg/Kg		0.005	< 0.005	mg/Kg
1,1-Dichloroethene 0.005 < 0.005 mg/Kg		0.005	< 0.005	mg/Kg
cis-1,2-Dichloroethene 0.005 < 0.005 mg/Kg		0.005	< 0.005	mg/Kg
trans-1,2-Dichloroethene 0.005 < 0.005 mg/Kg	trans-1,2-Dichloroethene	0.005	< 0.005	mg/Kg
1,2-Dichloropropane 0.005 < 0.005 mg/Kg	그 부음 그 그 가는 그 사람들이 되었다.	0.005	< 0.005	mg/Kg
cis-1,3-Dichloropropene 0.005 < 0.005 mg/Kg		0.005	< 0.005	mg/Kg
trans-1,3-Dichloropropene 0.005 < 0.005 mg/Kg	,	0.005	< 0.005	mg/Kg
Ethyl Benzene 0.005 < 0.005 mg/Kg		0.005	< 0.005	mg/Kg
2-Hexanone 0.010 < 0.010 mg/Kg	•	0.010	< 0.010	mg/Kg
4-Methyl-2-pentanone 0.010 < 0.010 mg/Kg		0.010	< 0.010	mg/Kg
Methylene Chloride 0.010 < 0.010 mg/Kg		0.010	< 0.010	mg/Kg
Styrene 0.005 < 0.005 mg/Kg	• • • • • • • • • • • • • • • • • • •	0.005	< 0.005	mg/Kg
1,1,2,2-Tetrachloroethane 0.005 < 0.005 mg/Kg	•	0.005	< 0.005	mg/Kg
Tetrachloroethene 0.005 < 0.005 mg/Kg		0.005	< 0.005	mg/Kg
Toluene 0.005 < 0.005 mg/Kg		0.005	< 0.005	mg/Kg
1,1,1-Trichloroethane 0.005 < 0.005 mg/Kg			< 0.005	
1,1,2-Trichloroethane 0.005 < 0.005 mg/Kg				=
Trichloroethene 0.005 < 0.005 mg/Kg				_

2201 West Campbell Park Drive, Chicago, Illinois 60612-3547

Analytical Report

Client:

Burns and McDonnell

Project ID:

27194-3.02, Rogers Park Main

Sample Number:

RPM-SB080-001

STAT Project No.: 702045

STAT Sample No.: 918703

Date Received: 06/14/2001

Date Taken: 06/14/2001

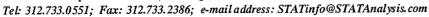
Time Taken: 1220

mg/Kg

mg/Kg

Date Reported: 06/22/2001

Analyte	Detection Limit	Result	Units
Vinyl Acetate	0.010	< 0.010	mg/Kg
Vinyl Chloride	0.010	< 0.010	mg/Kg
Xylenes (total)	0.005	< 0.005	mg/Kg
Polynuclear Aromatic Hydrocarbons	s Method 8270C		
Preparation Date: 06/15/2001			
Analysis Date: 6/17/01, 6/18/01			
Naphthalene	0.025	< 0.025	mg/Kg
Acenapthylene	0.025	< 0.025	mg/Kg.
Acenaphthene	0.025	0.036	mg/Kg
Fluorene	0.025	0.039	mg/Kg
Phenanthrene	0.025	0.360	mg/Kg
Anthracene	0.025	0.114	mg/Kg
Fluoranthene	0.025	0.750	mg/Kg
Pyrene	0.025	0.569	mg/Kg
Chrysene	0.025	0.308	mg/Kg
Benzo[a]anthracene	0.025	0.299	mg/Kg
Benzo[b]fluoranthene	0.025	0.155	mg/Kg
Benzo[k]fluoranthene	0.025	0.208	mg/Kg
Benzo[a]pyrene	0.025	0.275	mg/Kg
Indeno[1,2,3-cd]pyrene	0.025	0.166	mg/Kg
Dibenz[a,h]anthracene	0.025	0.089	mg/Kg
Benzo[g,h,i]perylene	0.025	0.169	mg/Kg


PCBs Method 8082

Preparation Date: 06/15/2001 Analysis Date: 06/19/2001

< 0.080 Aroclor 1016 0.080 0.080 < 0.080 Aroclor 1221

STAT Analysis Corporation:
2201 West Campbell Park Drive, Chicago, Illinois 60612-3547

Analytical Report

Client:

Burns and McDonnell

Project ID:

27194-3.02, Rogers Park Main

RPM-SB080-001 Sample Number:

STAT Project No.: 702045

STAT Sample No.: 918703

Date Received: 06/14/2001

Date Taken: 06/14/2001

Time Taken: 1220

Analyte	Detection Limit	Result	Units
Aroclor 1232	0.080	< 0.080	mg/Kg
Aroclor 1242	0.080	< 0.080	mg/Kg
Aroclor 1248	0.080	< 0.080	mg/Kg
Aroclor 1254	0.160	< 0.160	mg/Kg
Aroclor 1260	0.160	< 0.160	mg/Kg

Analytical Report

Client:

Burns and McDonnell

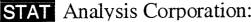
Project ID:

27194-3.02, Rogers Park Main

Sample Number:

RPM-SB080-001

STAT Project No.: 702045


STAT Sample No.: 918703

Date Received: 06/14/2001

Date Taken: 06/14/2001

Time Taken: 1220

Analyte	Detection Limit	Result	Units	Date Analyzed	Method
Solids, Total		86.72	%	06/20/2001	160.3
Total Cyanide	0.25	0.54	mg/Kg	06/18/2001	9010B/9014
RCRA Metals					
Arsenic	0.050	4.34	mg/Kg	06/20/2001	6020
Barium	0.500	28.8	mg/Kg	06/20/2001	6020
Cadmium	0.500	< 0.500	mg/Kg	06/20/2001	6020
Chromium	0.500	9.25	mg/Kg	06/20/2001	6020
Lead	0.500	47.2	mg/Kg	06/20/2001	6020
Mercury	0.040	0.228	mg/Kg	06/19/2001	7471A
Selenium	1.00	< 1.00	mg/Kg	06/20/2001	6020
Silver	0.500	< 0.500	mg/Kg	06/20/2001	6020

Analytical Report

Client:

Burns and McDonnell

Project ID:

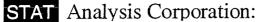
27194-3.02, Rogers Park Main

Sample Number:

RPM-SB081-001

STAT Project No.: 702045

STAT Sample No.: 918704


Date Received: ######

Date Taken: #######

Time Taken: 1315

Date Reported: #######

Analyte	Detection Limit	Result	Units
Solids, Total		89.26	%
Volatile Organic Compounds Metho Analysis Date: 06/20/2001	od 5035/8260B		
Acetone	0.025	0.126	mg/Kg
Benzene	0.005	< 0.005	mg/Kg
Bromodichloromethane	0.005	< 0.005	mg/Kg
Bromoform	0.005	< 0.005	mg/Kg
Bromomethane	0.010	< 0.010	mg/Kg
2-Butanone	0.010	0.020	mg/Kg
Carbon Disulfide	0.005	< 0.005	mg/Kg
Carbon Tetrachloride	0.005	< 0.005	mg/Kg
Chlorobenzene	0.005	< 0.005	mg/Kg
Chlorodibromomethane	0.005	< 0.005	mg/Kg
Chloroethane	0.010	< 0.010	mg/Kg
Chloroform	0.005	< 0.005	mg/Kg
Chloromethane	0.010	< 0.010	mg/Kg
1,1-Dichloroethane	0.005	< 0.005	mg/Kg
1,2-Dichloroethane	0.005	< 0.005	mg/Kg
1,1-Dichloroethene	0.005	< 0.005	mg/Kg
cis-1,2-Dichloroethene	0.005	< 0.005	mg/Kg
trans-1,2-Dichloroethene	0.005	< 0.005	mg/Kg
1,2-Dichloropropane	0.005	< 0.005	mg/Kg
cis-1,3-Dichloropropene	0.005	< 0.005	mg/Kg
trans-1,3-Dichloropropene	0.005	< 0.005	mg/Kg
Ethyl Benzene	0.005	< 0.005	mg/Kg
2-Hexanone	0.010	< 0.010	mg/Kg
4-Methyl-2-pentanone	0.010	< 0.010	mg/Kg
Methylene Chloride	0.010	< 0.010	mg/Kg
Styrene	0.005	< 0.005	mg/Kg
1,1,2,2-Tetrachloroethane	0.005	< 0.005	mg/Kg
Tetrachloroethene	0.005	< 0.005	mg/Kg
Toluene	0.005	< 0.005	mg/Kg

2201 West Campbell Park Drive, Chicago, Illinois 60612-3547 Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

Analytical Report

Client:

Burns and McDonnell

Project ID:

27194-3.02, Rogers Park Main

RPM-SB081-001

Sample Number: STAT Project No.: 702045

STAT Sample No.: 918704

Fluoranthene

Benzo[a]anthracene

Benzo[b]fluoranthene

Benzo[k]fluoranthene

Indeno[1,2,3-cd]pyrene

Dibenz[a,h]anthracene

Benzo[g,h,i]perylene

Benzo[a]pyrene

Pyrene

Chrysene

Date Received: ######

Date Taken: #######

Time Taken: 1315

Date Reported: ######

mg/Kg

imple No.: 916704			Date Reported.	
Analyte		Detection Limit	Result	Units
1,1,1-Trichloroeth	ane	0.005	< 0.005	mg/Kg
1,1,2-Trichloroetha	ane	0.005	< 0.005	mg/Kg
Trichloroethene		0.005	< 0.005	mg/Kg
Vinyl Acetate		0.010	< 0.010	mg/Kg
Vinyl Chloride		0.010	< 0.010	mg/Kg
Xylenes (total)		0.005	< 0.005	mg/Kg
Polynuclear Aron	natic Hydrocarbon	s Method 8270C		
Preparation Date:	06/15/2001			
Analysis Date:	6/17/01, 6/18/01			
Naphthalene		0.025	< 0.025	mg/Kg
Acenapthylene		0.025	< 0.025	mg/Kg
Acenaphthene		0.025	0.075	mg/Kg
Fluorene		0.025	0.087	mg/Kg
Phenanthrene		0.025	0.685	mg/Kg
Anthracene		0.025	0.242	mg/Kg

0.025

0.025

0.025

0.025

0.025

0.025

0.025

0.025

0.025

0.025

1.89

1.77

0.895

0.867

0.616

0.437

0.646

0.333

0.163

0.305

Analytical Report

Client:

Burns and McDonnell

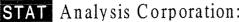
Project ID:

27194-3.02, Rogers Park Main

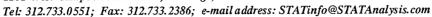
Sample Number:

RPM-SB081-001

STAT Project No.: 702045


STAT Sample No.: 918704

Date Received: 06/14/2001


Date Taken: 06/14/2001

Time Taken: 1315

Analyte	Detection Limit	Result	Units	Date Analyzed	Method
Solids, Total		89.26	%	06/20/2001	160.3
Total Cyanide	0.25	< 0.25	mg/Kg	06/18/2001	9010B/9014
RCRA Metals					
Arsenic	0.050	9.92	mg/Kg	06/20/2001	6020
Barium	0.500	31.4	mg/Kg	06/20/2001	6020
Cadmium	0.500	< 0.500	mg/Kg	06/20/2001	6020
Chromium	0.500	11.8	mg/Kg	06/20/2001	6020
Lead	0.500	21.4	mg/Kg	06/20/2001	6020
Mercury	0.040	0.473	mg/Kg	06/19/2001	7471A
Selenium	1.00	< 1.00	mg/Kg	06/20/2001	6020
Silver	0.500	< 0.500	mg/Kg	06/20/2001	6020

STAT Analysis Corporation:
2201 West Campbell Park Drive, Chicago, Illinois 60612-3547

Analytical Report

Client:

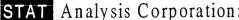
Burns and McDonnell

Project ID:

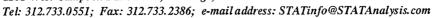
27194-3.02, Rogers Park Main

Sample Number:

RPM-SB081-002


STAT Project No.: 702045

STAT Sample No.: 918705


Date Received: 06/14/2001 Date Taken: 06/14/2001

Time Taken: 1330

Solids, Total 85.63 % Volatile Organic Compounds Method 5035/8260B Analysis Date: 06/20/2001 0.025 0.061 mg/Kg Acetone 0.0025 0.005 mg/Kg Benzene 0.005 < 0.005 mg/Kg Bromodichloromethane 0.005 < 0.005 mg/Kg Bromoform 0.005 < 0.005 mg/Kg Bromomethane 0.010 < 0.010 mg/Kg Bromomethane 0.010 < 0.010 mg/Kg Carbon Disulfide 0.005 < 0.005 mg/Kg Carbon Tetrachloride 0.005 < 0.005 mg/Kg Chlorobenzene 0.005 < 0.005 mg/Kg Chlorodibromomethane 0.005 < 0.005 mg/Kg Chloroethane 0.010 < 0.010 mg/Kg Chloromethane 0.010 < 0.010 mg/Kg 1,1-Dichloroethane 0.005 < 0.005 mg/Kg 1,2-Dichloroethene 0.005 < 0.005	Analyte	Detection Limit	Result	Units
Analysis Date: 06/20/2001 Acetone 0.0025 0.0061 mg/Kg Benzene 0.0005 < 0.005 mg/Kg Bromodichloromethane 0.005 < 0.005 mg/Kg Bromoform 0.005 < 0.005 mg/Kg Bromomethane 0.010 < 0.010 mg/Kg Bromomethane 0.010 < 0.010 mg/Kg Carbon Disulfide 0.005 < 0.005 mg/Kg Carbon Tetrachloride 0.005 < 0.005 mg/Kg Chlorobenzene 0.005 < 0.005 mg/Kg Chlorodibromomethane 0.005 < 0.005 mg/Kg Chlorodibromomethane 0.005 < 0.005 mg/Kg Chloroform 0.005 < 0.005 mg/Kg Chloromethane 0.010 < 0.010 mg/Kg Chloromethane 0.005 < 0.005 mg/Kg 1,1-Dichloroethane 0.005 < 0.005 mg/Kg 1,2-Dichloroethene 0.005 < 0.005 mg/Kg trans-1,2-Dichloroethene 0.005 < 0.005 mg/Kg trans-1,2-Dichloroethene 0.005 < 0.005 mg/Kg 1,2-Dichloroethene 0.005 < 0.005 mg/Kg trans-1,2-Dichloroethene 0.005 < 0.005 mg/Kg	Solids, Total		85.63	%
Acetone 0.025 0.061 mg/Kg Benzene 0.005 < 0.005	Volatile Organic Compounds Metho	d 5035/8260B		
Benzene 0.005 < 0.005 mg/Kg Bromodichloromethane 0.005 < 0.005	Analysis Date: 06/20/2001			
Bromodichloromethane 0.005 < 0.005 mg/Kg Bromoform 0.005 < 0.005	Acetone	0.025	0.061	mg/Kg
Bromoform 0.005 < 0.005 mg/Kg Bromomethane 0.010 < 0.010	Benzene	0.005	< 0.005	mg/Kg
Bromomethane 0.010 < 0.010 mg/Kg 2-Butanone 0.010 < 0.010	Bromodichloromethane	0.005	< 0.005	mg/Kg
2-Butanone 0.010 < 0.010	Bromoform	0.005	< 0.005	mg/Kg
Carbon Disulfide 0.005 < 0.005	Bromomethane	0.010	< 0.010	mg/Kg
Carbon Tetrachloride 0.005 < 0.005 mg/Kg Chlorobenzene 0.005 < 0.005	2-Butanone	0.010	< 0.010	mg/Kg
Chlorobenzene 0.005 < 0.005 mg/Kg Chlorodibromomethane 0.005 < 0.005	Carbon Disulfide	0.005	< 0.005	mg/Kg
Chlorodibromomethane 0.005 < 0.005 mg/Kg Chloroethane 0.010 < 0.010	Carbon Tetrachloride	0.005	< 0.005	mg/Kg
Chloroethane 0.010 < 0.010 mg/Kg Chloroform 0.005 < 0.005	Chlorobenzene	0.005	< 0.005	mg/Kg
Chloroform 0.005 < 0.005 mg/Kg Chloromethane 0.010 < 0.010	Chlorodibromomethane	0.005	< 0.005	mg/Kg
Chloromethane 0.010 < 0.010 mg/Kg 1,1-Dichloroethane 0.005 < 0.005	Chloroethane	0.010	< 0.010	mg/Kg
1,1-Dichloroethane 0.005 < 0.005	Chloroform	0.005	< 0.005	mg/Kg
1,2-Dichloroethane 0.005 < 0.005	Chloromethane	0.010	< 0.010	mg/Kg
1,1-Dichloroethene 0.005 < 0.005	1,1-Dichloroethane	0.005	< 0.005	mg/Kg
cis-1,2-Dichloroethene 0.005 < 0.005	1,2-Dichloroethane	0.005	< 0.005	mg/Kg
trans-1,2-Dichloropropane 0.005 < 0.005 mg/Kg 1,2-Dichloropropane 0.005 < 0.005 mg/Kg	1,1-Dichloroethene	0.005	< 0.005	mg/Kg
1,2-Dichloropropane 0.005 < 0.005 mg/Kg	cis-1,2-Dichloroethene	0.005	< 0.005	mg/Kg
1,2 Stemotoproprint	trans-1,2-Dichloroethene	0.005	< 0.005	mg/Kg
cis-1.3-Dichloropropene 0.005 < 0.005 mg/Kg	1,2-Dichloropropane	0.005	< 0.005	mg/Kg
,	cis-1,3-Dichloropropene	0.005	< 0.005	mg/Kg
trans-1,3-Dichloropropene 0.005 < 0.005 mg/Kg	trans-1,3-Dichloropropene	0.005	< 0.005	mg/Kg
Ethyl Benzene 0.005 < 0.005 mg/Kg		0.005	< 0.005	mg/Kg
2-Hexanone 0.010 < 0.010 mg/Kg	2-Hexanone	0.010	< 0.010	mg/Kg
4-Methyl-2-pentanone 0.010 < 0.010 mg/Kg	4-Methyl-2-pentanone	0.010	< 0.010	mg/Kg
Methylene Chloride 0.010 < 0.010 mg/Kg	· -	0.010	< 0.010	mg/Kg
Styrene $0.005 < 0.005$ mg/Kg	_	0.005	< 0.005	
1,1,2,2-Tetrachloroethane 0.005 < 0.005 mg/Kg	•	0.005	< 0.005	mg/Kg
Tetrachloroethene 0.005 < 0.005 mg/Kg		0.005	< 0.005	mg/Kg
Toluene 0.005 < 0.005 mg/Kg		0.005	< 0.005	mg/Kg
1,1,1-Trichloroethane 0.005 < 0.005 mg/Kg		0.005	< 0.005	mg/Kg
1,1,2-Trichloroethane 0.005 < 0.005 mg/Kg		0.005	< 0.005	mg/Kg

Analysis Corporation:
2201 West Campbell Park Drive, Chicago, Illinois 60612-3547

Analytical Report

Client:

Burns and McDonnell

Project ID:

27194-3.02, Rogers Park Main

Sample Number:

RPM-SB081-002

STAT Project No.: 702045

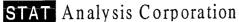
STAT Sample No.: 918705

Benzo[g,h,i]perylene

Date Received: 06/14/2001

Date Taken: 06/14/2001

Time Taken: 1330


0.066

mg/Kg

Date Reported: 06/22/2001

Analyte	Detection Limit	Result	Units
Trichloroethene	0.005	< 0.005	mg/Kg
Vinyl Acetate	0.010	< 0.010	mg/Kg
Vinyl Chloride	0.010	< 0.010	mg/Kg
Xylenes (total)	0.005	< 0.005	mg/Kg
Polynuclear Aromatic Hydrocarbon	s Method 8270C		
Preparation Date: 06/15/2001			
Analysis Date: 06/17/2001			
Naphthalene	0.025	< 0.025	mg/Kg
Acenapthylene	0.025	< 0.025	mg/Kg
Acenaphthene	0.025	0.031	mg/Kg
Fluorene	0.025	0.035	mg/Kg
Phenanthrene	0.025	0.289	mg/Kg
Anthracene	0.025	0.116	mg/Kg
Fluoranthene	0.025	0.427	mg/Kg
Pyrene	0.025	0.405	mg/Kg
Chrysene	0.025	0.235	mg/Kg
Benzo[a]anthracene	0.025	0.238	mg/Kg
Benzo[b]fluoranthene	0.025	0.108	mg/Kg
Benzo[k]fluoranthene	0.025	0.130	mg/Kg
Benzo[a]pyrene	0.025	0.166	mg/Kg
Indeno[1,2,3-cd]pyrene	0.025	0.075	mg/Kg
Dibenz[a,h]anthracene	0.025	0.038	mg/Kg

0.025

Analytical Report

Client:

Burns and McDonnell

Project ID:

27194-3.02, Rogers Park Main

RPM-SB081-002

Sample Number: STAT Project No.: 702045

STAT Sample No.: 918705

Date Received: 06/14/2001

Date Taken: 06/14/2001

Time Taken: 1330

Analyte	Detection Limit	Result	Units	Date Analyzed	Method
Solids, Total		85.63	%	06/20/2001	160.3
Total Cyanide	0.25	< 0.25	mg/Kg	06/18/2001	9010B/9014
RCRA Metals					
Arsenic	0.050	3.12	mg/Kg	06/20/2001	6020
Barium	0.500	19.5	mg/Kg	06/20/2001	6020
Cadmium	0.500	< 0.500	mg/Kg	06/20/2001	6020
Chromium	0.500	7.42	mg/Kg	06/20/2001	6020
Lead	0.500	19.5	mg/Kg	06/20/2001	6020
Mercury	0.040	0.765	mg/Kg	06/19/2001	7471A
Selenium	1.00	< 1.00	mg/Kg	06/20/2001	6020
Silver	0.500	< 0.500	mg/Kg	06/20/2001	6020

Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

Analytical Report

Client:

Burns and McDonnell

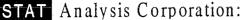
Project ID:

27194-3.02, Rogers Park Main

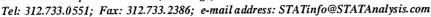
Sample Number:

RPM-SB082-001

STAT Project No.: 702045


STAT Sample No.: 918706

Date Received: 06/14/2001


Date Taken: 06/14/2001

Time Taken: 1345

Analyte	Detection Limit	Result	Units
Solids, Total		85.18	%
Volatile Organic Compounds Metho	od 5035/8260B		
Analysis Date: 06/20/2001			
Acetone	0.025	< 0.025	mg/Kg
Benzene	0.005	< 0.005	mg/Kg
Bromodichloromethane	0.005	< 0.005	mg/Kg
Bromoform	0.005	< 0.005	mg/Kg
Bromomethane	0.010	< 0.010	mg/Kg
2-Butanone	0.010	< 0.010	mg/Kg
Carbon Disulfide	0.005	< 0.005	mg/Kg
Carbon Tetrachloride	0.005	< 0.005	mg/Kg
Chlorobenzene	0.005	< 0.005	mg/Kg
Chlorodibromomethane	0.005	< 0.005	mg/Kg
Chloroethane	0.010	< 0.010	mg/Kg
Chloroform	0.005	< 0.005	mg/Kg
Chloromethane	0.010	< 0.010	mg/Kg
1,1-Dichloroethane	0.005	< 0.005	mg/Kg
1,2-Dichloroethane	0.005	< 0.005	mg/Kg
1,1-Dichloroethene	0.005	< 0.005	mg/Kg
cis-1,2-Dichloroethene	0.005	< 0.005	mg/Kg
trans-1,2-Dichloroethene	0.005	< 0.005	mg/Kg
1,2-Dichloropropane	0.005	< 0.005	mg/Kg
cis-1,3-Dichloropropene	0.005	< 0.005	mg/Kg
trans-1,3-Dichloropropene	0.005	< 0.005	mg/Kg
Ethyl Benzene	0.005	< 0.005	mg/Kg
2-Hexanone	0.010	< 0.010	mg/Kg
4-Methyl-2-pentanone	0.010	< 0.010	mg/Kg
Methylene Chloride	0.010	< 0.010	mg/Kg
Styrene	0.005	< 0.005	mg/Kg
1,1,2,2-Tetrachloroethane	0.005	< 0.005	mg/Kg
Tetrachloroethene	0.005	< 0.005	mg/Kg
Toluene	0.005	< 0.005	mg/Kg
1,1,1-Trichloroethane	0.005	< 0.005	mg/Kg
1,1,2-Trichloroethane	0.005	< 0.005	mg/Kg

Analysis Corporation:
2201 West Campbell Park Drive, Chicago, Illinois 60612-3547

Analytical Report

Client:

Burns and McDonnell

Project ID:

27194-3.02, Rogers Park Main

RPM-SB082-001

Sample Number: STAT Project No.: 702045

STAT Sample No.: 918706

Date Received: 06/14/2001

Date Taken: 06/14/2001

Time Taken: 1345

Analyte	Detection Limit	Result	Units
Trichloroethene	0.005	< 0.005	mg/Kg
Vinyl Acetate	0.010	< 0.010	mg/Kg
Vinyl Chloride	0.010	< 0.010	mg/Kg
Xylenes (total)	0.005	< 0.005	mg/Kg
Polynuclear Aromatic Hydrocarbon	s Method 8270C		
Preparation Date: 06/15/2001			
Analysis Date: 06/17/2001			
Naphthalene	. 0.025	< 0.025	mg/Kg
Acenapthylene	0.025	< 0.025	mg/Kg
Acenaphthene	0.025	< 0.025	mg/Kg
Fluorene	0.025	< 0.025	mg/Kg
Phenanthrene	0.025	< 0.025	mg/Kg
Anthracene	0.025	< 0.025	mg/Kg
Fluoranthene	0.025	< 0.025	mg/Kg
Pyrene	0.025	< 0.025	mg/Kg
Chrysene	0.025	< 0.025	mg/Kg
Benzo[a]anthracene	0.025	< 0.025	mg/Kg
Benzo[b]fluoranthene	0.025	< 0.025	mg/Kg
Benzo[k]fluoranthene	0.025	< 0.025	mg/Kg
Benzo[a]pyrene	0.025	< 0.025	mg/Kg
Indeno[1,2,3-cd]pyrene	0.025	< 0.025	mg/Kg
Dibenz[a,h]anthracene	0.025	< 0.025	mg/Kg
Benzo[g,h,i]perylene	0.025	< 0.025	mg/Kg

Analytical Report

Client:

Burns and McDonnell

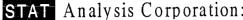
Project ID:

27194-3.02, Rogers Park Main

Sample Number:

RPM-SB082-001

STAT Project No.: 702045


STAT Sample No: 918706

Date Received: 06/14/2001

Date Taken: 06/14/2001

Time Taken: 1345

Analyte	Detection Limit	Result	Units	Date Analyzed	Method
Solids, Total		85.18	%	06/20/2001	160.3
Total Cyanide	0.25	< 0.25	mg/Kg	06/18/2001	9010B/9014
RCRA Metals					
Arsenic	0.050	8.43	mg/Kg	06/20/2001	6020
Barium	0.500	28.0	mg/Kg	06/20/2001	6020
Cadmium	0.500	< 0.500	mg/Kg	06/20/2001	6020
Chromium	0.500	12.7	mg/Kg	06/20/2001	6020
Lead	0.500	15.9	mg/Kg	06/20/2001	6020
Mercury	0.040	< 0.040	mg/Kg	06/19/2001	7471A
Selenium	1.00	< 1.00	mg/Kg	06/20/2001	6020
Silver	0.500	< 0.500	mg/Kg	06/20/2001	6020

Analytical Report

Client:

Burns and McDonnell

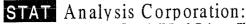
Project ID:

27194-3.03, Rogers Park Main

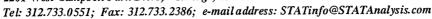
Sample Number:

RPM-SB083-001

STAT Project No.: 702051


STAT Sample No.: 918746

Date Received: 06/15/2001


Date Taken: 06/15/2001

Time Taken: 1100

······································			_
Analyte	Detection Limit	Result	Units
Solids, Total		76.60	%
Volatile Organic Compounds Met	hod 5035/8260B		
Analysis Date: 06/20/2001			
Acetone	0.025	< 0.025	mg/Kg
Benzene	0.005	< 0.005	mg/Kg
Bromodichloromethane	0.005	< 0.005	mg/Kg
Bromoform	0.005	< 0.005	mg/Kg
Bromomethane	0.010	< 0.010	mg/Kg
2-Butanone	0.010	< 0.010	mg/Kg
Carbon Disulfide	0005	< 0.005	mg/Kg
Carbon Tetrachloride	0.005	< 0.005	mg/Kg
Chlorobenzene	0.005	< 0.005	mg/Kg
Chlorodibromomethane	0.005	< 0.005	mg/Kg
Chloroethane	0.010	< 0.010	mg/Kg
Chloroform	0.005	< 0.005	mg/Kg
Chloromethane	0.010	< 0.010	mg/Kg
1,1-Dichloroethane	0.005	< 0.005	mg/Kg
1,2-Dichloroethane	0.005	< 0.005	mg/Kg
1,1-Dichloroethene	0.005	< 0.005	mg/Kg
cis-1,2-Dichloroethene	0.005	< 0.005	mg/Kg
trans-1,2-Dichloroethene	0.005	< 0.005	mg/Kg
1,2-Dichloropropane	0.005	< 0.005	mg/Kg
cis-1,3-Dichloropropene	0.005	< 0.005	mg/Kg
trans-1,3-Dichloropropene	0.005	< 0.005	mg/Kg
Ethyl Benzene	0.005	< 0.005	mg/Kg
2-Hexanone	0.010	< 0.010	mg/Kg
4-Methyl-2-pentanone	0.010	< 0.010	mg/Kg
Methylene Chloride	0.010	< 0.010	mg/Kg
Styrene	0.005	< 0.005	mg/Kg
1,1,2,2-Tetrachloroethane	0.005	< 0.005	mg/Kg
Tetrachloroethene	0.005	< 0.005	mg/Kg
Toluene	0.005	< 0.005	mg/Kg
1,1,1-Trichloroethane	0.005	< 0.005	mg/Kg
1,1,2-Trichloroethane	0.005	< 0.005	mg/Kg

2201 West Campbell Park Drive, Chicago, Illinois 60612-3547

Analytical Report

Client:

Burns and McDonnell

Project ID:

27194-3.03, Rogers Park Main

Sample Number:

RPM-SB083-001

Sample Ivamber.

STAT Project No.: 702051

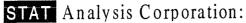
Benzo[g,h,i]perylene

STAT Sample No.: 918746

Date Received: 06/15/2001

Date Taken: 06/15/2001

Time Taken: 1100


Date Reported: 06/22/2001

Analyte	Detection Limit	Result	Units
Trichloroethene	0.005	< 0.005	mg/Kg
Vinyl Acetate	0.010	< 0.010	mg/Kg
Vinyl Chloride	0.010	< 0.010	mg/Kg
Xylenes (total)	0.005	< 0.005	mg/Kg
Polynuclear Aromatic Hydrocarbon	s Method 8270C		
Preparation Date: 06/18/2001			
Analysis Date: 06/18/2001			
Naphthalene	0.025	< 0.025	mg/Kg
Acenapthylene	0.025	< 0.025	mg/Kg
Acenaphthene	0.025	< 0.025	mg/Kg
Fluorene	0.025	< 0.025	mg/Kg
Phenanthrene	0.025	< 0.025	mg/Kg
Anthracene	0.025	< 0.025	mg/Kg
Fluoranthene	0.025	0.054	mg/Kg
Pyrene	0.025	0.047	mg/Kg
Chrysene	0.025	0.035	mg/Kg
Benzo[a]anthracene	0.025	0.029	mg/Kg
Benzo[b]fluoranthene	0.025	0.027	mg/Kg
Benzo[k]fluoranthene	0.025	0.031	mg/Kg
Benzo[a]pyrene	0.025	0.028	mg/Kg
Indeno[1,2,3-cd]pyrene	0.025	< 0.025	mg/Kg
Dibenz[a,h]anthracene	0.025	< 0.025	mg/Kg

0.025

< 0.025

mg/Kg

2201 West Campbell Park Drive, Chicago, Illinois 60612-3547 Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

Analytical Report

Client:

Burns and McDonnell

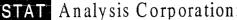
Project ID:

27194-3.03, Rogers Park Main

Sample Number:

RPM-SB083-001

STAT Project No.: 702051


STAT Sample No.: 918746

Date Received: 06/15/2001

Date Taken: 06/15/2001

Time Taken: 1100

Analyte	Detection Limit	Result	Units	Date Analyzed	Method
Solids, Total		76.60	%	06/20/2001	160.3
Total Cyanide	0.25	< 0.25	mg/Kg	06/19/2001	9010B/9014
RCRA Metals					
Arsenic	0.050	3.89	mg/Kg	06/20/2001	6020
Barium	0.500	68.6	mg/Kg	06/20/2001	6020
Cadmium	0.500	< 0.500	mg/Kg	06/20/2001	6020
Chromium	0.500	21.2	mg/Kg	06/20/2001	6020
Lead	0.500	86.5	mg/Kg	06/20/2001	6020
Mercury	0.040	0.435	mg/Kg	06/19/2001	7471A
Selenium	1.00	< 1.00	mg/Kg	06/20/2001	6020
Silver	0.500	< 0.500	mg/Kg	06/20/2001	6020

Analytical Report

Client:

Burns and McDonnell

Project ID:

27194-3.03, Rogers Park Main

Sample Number:

RPM-SB083-002

STAT Project No.: 702051


STAT Sample No.: 918747

Date Received: 06/15/2001

Date Taken: 06/15/2001

Time Taken: 1110

Analyte	Detection Limit	Result	Units
Solids, Total		80.45	%
Volatile Organic Compounds Metho	d 5035/8260B		
Analysis Date: 6/20/01, 6/21/01			
Acetone	0.025	< 0.025	mg/Kg
Benzene	0.005	< 0.005	mg/Kg
Bromodichloromethane	0.005	< 0.005	mg/Kg
Bromoform	0.005	< 0.005	mg/Kg
Bromomethane	0.010	< 0.010	mg/Kg
2-Butanone	0.010	< 0.010	mg/Kg
Carbon Disulfide	0.005	< 0.005	mg/Kg
Carbon Tetrachloride	0.005	< 0.005	mg/Kg
Chlorobenzene	0.005	< 0.005	mg/Kg
Chlorodibromomethane	0.005	< 0.005	mg/Kg
Chloroethane	0.010	< 0.010	mg/Kg
Chloroform	0.005	< 0.005	mg/Kg
Chloromethane	0.010	< 0.010	mg/Kg
1,1-Dichloroethane	0.005	< 0.005	mg/Kg
1,2-Dichloroethane	0.005	< 0.005	mg/Kg
1,1-Dichloroethene	0.005	< 0.005	mg/Kg
cis-1,2-Dichloroethene	0.005	0.902	mg/Kg
trans-1,2-Dichloroethene	0.005	0.055	mg/Kg
1,2-Dichloropropane	0.005	< 0.005	mg/Kg
cis-1,3-Dichloropropene	0.005	< 0.005	mg/Kg
trans-1,3-Dichloropropene	0.005	< 0.005	mg/Kg
Ethyl Benzene	0.005	< 0.005	mg/Kg
2-Hexanone	0.010	< 0.010	mg/Kg
4-Methyl-2-pentanone	0.010	< 0.010	mg/Kg
Methylene Chloride	0.010	< 0.010	mg/Kg
Styrene	0.005	< 0.005	mg/Kg
1,1,2,2-Tetrachloroethane	0.005	< 0.005	mg/Kg
Tetrachloroethene	0.005	< 0.005	mg/Kg
Toluene	0.005	< 0.005	mg/Kg
1,1,1-Trichloroethane	0.005	< 0.005	mg/Kg
1,1,2-Trichloroethane	0.005	< 0.005	mg/Kg

2201 West Campbell Park Drive, Chicago, Illinois 60612-3547

Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

Analytical Report

Client:

Burns and McDonnell

Project ID:

27194-3.03, Rogers Park Main

Sample Number: RPM-SB083-002

Benzo[g,h,i]perylene

STAT Project No.: 702051

STAT Sample No.: 918747

Date Received: 06/15/2001

Date Taken: 06/15/2001

Time Taken: 1110

Date Reported: 06/22/2001

Analyte	Detection Limit	Result	Units
Trichloroethene	0.005	3.09	mg/Kg
Vinyl Acetate	0.010	< 0.010	mg/Kg
Vinyl Chloride	0.010	0.010	mg/Kg
Xylenes (total)	0.005	< 0.005	mg/Kg
Polynuclear Aromatic Hydrocarbon	s Method 8270C		
Preparation Date: 06/18/2001			
Analysis Date: 06/18/2001			
Naphthalene	0.025	< 0.025	mg/Kg
Acenapthylene	0.025	< 0.025	mg/Kg
Acenaphthene	0.025	< 0.025	mg/Kg
Fluorene	0.025	< 0.025	mg/Kg
Phenanthrene	0.025	< 0.025	mg/Kg
Anthracene	0.025	< 0.025	mg/Kg
Fluoranthene	0.025	< 0.025	mg/Kg
Pyrene	0.025	< 0.025	mg/Kg
Chrysene	0.025	< 0.025	mg/Kg
Benzo[a]anthracene	0.025	< 0.025	mg/Kg
Benzo[b]fluoranthene	0.025	< 0.025	mg/Kg
Benzo[k]fluoranthene	0.025	< 0.025	mg/Kg
Benzo[a]pyrene	0.025	< 0.025	mg/Kg
Indeno[1,2,3-cd]pyrene	0.025	< 0.025	mg/Kg
Dibenz[a,h]anthracene	0.025	< 0.025	mg/Kg

0.025

< 0.025

mg/Kg

Analytical Report

Client:

Burns and McDonnell

Project ID:

27194-3.03, Rogers Park Main

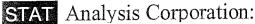
Sample Number:

RPM-SB083-002

STAT Sample No.: 918747

STAT Project No.: 702051

Date Received: 06/15/2001


Date Taken: 06/15/2001

Time Taken: 1110

Analyte	Detection Limit	Result	Units	Date Analyzed	Method
Solids, Total		80.45	%	06/20/2001	160.3
Total Cyanide	0.25	< 0.25	mg/Kg	06/19/2001	9010B/9014
RCRA Metals					
Arsenic	0.050	8.83	mg/Kg	06/20/2001	6020
Barium	0.500	45.9	mg/Kg	06/20/2001	6020
Cadmium	0.500	< 0.500	mg/Kg	06/20/2001	6020
Chromium	0.500	21.2	mg/Kg	06/20/2001	6020
Lead	0.500	15.1	mg/Kg	06/20/2001	6020
Mercury	0.040	< 0.040	mg/Kg	06/19/2001	7471A
Selenium	1.00	< 1.00	mg/Kg	06/20/2001	6020
Silver	0.500	< 0.500	mg/Kg	06/20/2001	6020

Groundwater Analytical Results Data Sheets

The Peoples Gas Light and Coke Company
The Rogers Park Sub-Shop
Main Parcel

2201 West Campbell Park Drive, Chicago, Illinois 60612-3547 Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

Analytical Report

Client:

Burns & McDonnell

Project ID:

27194-4.07, Peoples Gas-Rogers Park

Sample Number:

RPM-MW01-001

STAT Project No.: 701830

STAT Sample No.: 917195

Date Received: 5/4/01

Date Taken: 5/4/01 Time Taken: 1430

Analyte	Detection Limit	Result	Units
Volatile Organic Compounds Metho	od 5030B/8260B		
Analysis Date: 5/9/01			
Acetone	0.010	< 0.010	mg/L
Benzene	0.005	< 0.005	mg/L
Bromodichloromethane	0.005	< 0.005	mg/L
Bromoform	0.005	< 0.005	mg/L
Bromomethane	0.010	< 0.010	mg/L
2-Butanone	0.010	< 0.010	mg/L
Carbon Disulfide	0.005	< 0.005	mg/L
Carbon Tetrachloride	0.005	< 0.005	mg/L
Chlorobenzene	0.005	< 0.005	mg/L
Chlorodibromomethane	0.005	< 0.005	mg/L
Chloroethane	0.010	< 0.010	mg/L
Chloroform	0.00015	< 0.00015	mg/L
Chloromethane	0.010	< 0.010	mg/L
1,1-Dichloroethane	0.005	< 0.005	mg/L
1,2-Dichloroethane	0.005	< 0.005	mg/L
1,1-Dichloroethene	0.005	< 0.005	mg/L
cis-1,2-Dichloroethene	0.005	< 0.005	mg/L
trans-1,2-Dichloroethene	0.005	< 0.005	mg/L
1,2-Dichloropropane	0.005	< 0.005	mg/L
cis-1,3-Dichloropropene	0.005	< 0.005	mg/L
trans-1,3-Dichloropropene	0.005	< 0.005	mg/L
Ethyl Benzene	0.005	< 0.005	mg/L
2-Hexanone	0.010	< 0.010	mg/L
4-Methyl-2-pentanone	0.010	< 0.010	mg/L
Methylene Chloride	0.010	< 0.010	mg/L
Styrene	0.005	< 0.005	mg/L
1,1,2,2-Tetrachloroethane	0.005	< 0.005	mg/L
Tetrachloroethene	0.005	< 0.005	mg/L
Toluene	0.005	< 0.005	mg/L
1,1,1-Trichloroethane	0.005	< 0.005	mg/L
1,1,2-Trichloroethane	0.005	< 0.005	mg/L

2201 West Campbell Park Drive, Chicago, Illinois 60612-3547

< 0.005

Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

Analytical Report

Client:

Burns & McDonnell

Project ID:

27194-4.07, Peoples Gas-Rogers Park

Date Received: 5/4/01

Sample Number:

RPM-MW01-001

Date Taken: 5/4/01 Time Taken: 1430

mg/L

STAT Project No.: 701830

Date Reported: 5/16/01

STAT Sample No.: 917195

Xylenes (total)

Analyte	Detection Limit	Result	Units
Trichloroethene	0.005	< 0.005	mg/L
Vinyl Acetate	0.010	< 0.010	mg/L
Vinyl Chloride	0.005	< 0.005	mg/L

0.005

Polynuclear Aromatic Hydrocarbons Method 8270C

Preparation Date:	5/8/01	
Analysis Date:	5/8/01	

Tillary bib Date.			
Naphthalene	0.001	< 0.001 R	mg/L
Acenapthylene	0.002	< 0.002 €	mg/L
Acenaphthene	0.002	< 0.002	mg/L
Fluorene	0.002	< 0.002 /2	mg/L
Phenanthrene	0.002	< 0.002 12	mg/L
Anthracene	0.002	< 0.002	mg/L
Fluoranthene	0.002	< 0.002	mg/L
Pyrene	0.002	< 0.002 🗷	mg/L
Chrysene	0.001	< 0.001 12	mg/L
Benzo[a]anthracene	0.00013	< 0.00013	mg/L
Benzo[b]fluoranthene	0.00018	< 0.00018 P	mg/L
Benzo[k]fluoranthene	0.00017	< 0.00017	mg/L
Benzo[a]pyrene	0.0002	< 0.0002 🕿	mg/L
Indeno[1,2,3-cd]pyrene	0.0001	< 0.0001 2	mg/L
Dibenz[a,h]anthracene	0.0001	< 0.0001 12	mg/L
Benzo[g,h,i]perylene	0.0001	< 0.0001 12	mg/L

R: M. NUSABLE

Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

Analytical Report

Client:

Burns & McDonnell

Project ID:

27194-4.07, Peoples Gas-Rogers Park

Date Received: 5/4/01

Sample Number:

RPM-MW01-001

Date Taken: 5/4/01

STAT Project No.: 701830

Time Taken: 1430

STAT Sample No.: 917195

Analyte	Detection Limit	Result	Units	Date Analyzed	Method
Total Cyanide	0.010	< 0.010	mg/L	5/9/01	9010B/9014
RCRA Metals					
Arsenic	0.010	< 0.010	mg/L	5/10/01	6020
Barium	0.010	0.022	mg/L	5/10/01	6020
Cadmium	0.005	< 0.005	mg/L	5/10/01	6020
Chromium	0.010	< 0.010	mg/L	5/10/01	6020
Lead	0.005	< 0.005	mg/L	5/10/01	6020
Mercury	0.0005	< 0.0005	mg/L	5/9/01	7470A
Selenium	0.020	< 0.020	mg/L	5/10/01	6020
Silver	0.010	< 0.010	mg/L	5/10/01	6020

Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

Analytical Report

Client:

Burns & McDonnell

Project ID:

27194-4.07, Peoples Gas-Rogers Park

RPM-MW02-001 Sample Number:

STAT Project No.: 701830

STAT Sample No.: 917194

Date Received: 5/4/01

Date Taken: 5/4/01 Time Taken: 1415

Analyte	Detection Limit	Result	Units
Volatile Organic Compounds Metho	od 5030B/8260B		
Analysis Date: 5/9/01			
Acetone	0.010	< 0.010	mg/L
Benzene	0.005	< 0.005	mg/L
Bromodichloromethane	0.005	< 0.005	mg/L
Bromoform	0.005	< 0.005	mg/L
Bromomethane	0.010	< 0.010	mg/L
2-Butanone	0.010	< 0.010	mg/L
Carbon Disulfide	0.005	< 0.005	mg/L
Carbon Tetrachloride	0.005	< 0.005	mg/L
Chlorobenzene	0.005	< 0.005	mg/L
Chlorodibromomethane	0.005	< 0.005	mg/L
Chloroethane	0.010	< 0.010	mg/L
Chloroform	0.00015	< 0.00015	mg/L
Chloromethane	0.010	< 0.010	mg/L
1,1-Dichloroethane	0.005	< 0.005	mg/L
1,2-Dichloroethane	0.005	< 0.005	mg/L
1,1-Dichloroethene	0.005	< 0.005	mg/L
cis-1,2-Dichloroethene	0.005	< 0.005	mg/L
trans-1,2-Dichloroethene	0.005	< 0.005	mg/L
1,2-Dichloropropane	0.005	< 0.005	mg/L
cis-1,3-Dichloropropene	0.005	< 0.005	mg/L
trans-1,3-Dichloropropene	0.005	< 0.005	mg/L
Ethyl Benzene	0.005	< 0.005	mg/L
2-Hexanone	0.010	< 0.010	mg/L
4-Methyl-2-pentanone	0.010	< 0.010	mg/L
Methylene Chloride	0.010	< 0.010	mg/L
Styrene	0.005	< 0.005	mg/L
1,1,2,2-Tetrachloroethane	0.005	< 0.005	mg/L
Tetrachloroethene	0.005	< 0.005	mg/L
Toluene	0.005	< 0.005	mg/L
1,1,1-Trichloroethane	0.005	< 0.005	mg/L
1,1,2-Trichloroethane	0.005	< 0.005	mg/L

Analytical Report

Client:

Burns & McDonnell

Project ID:

27194-4.07, Peoples Gas-Rogers Park

RPM-MW02-001

Sample Number: STAT Project No.: 701830

STAT Sample No.: 917194

Date Received: 5/4/01

Date Taken: 5/4/01

Time Taken: 1415

Date Reported: 5/16/01

Analyte	Detection Limit	Result	Units
Trichloroethene	0.005	< 0.005	mg/L
Vinyl Acetate	0.010	< 0.010	mg/L
Vinyl Chloride	0.005	< 0.005	mg/L
Xylenes (total)	0.005	< 0.005	mg/L
Polynuclear Aromatic Hydrocarbon	s Method 8270C		
Preparation Date: 5/8/01			
Analysis Date: 5/8/01			
Naphthalene	0.001	< 0.001 R	mg/L
Acenapthylene	0.002	< 0.002 12	mg/L
Acenaphthene	0.002	< 0.002 \(\mathbb{P}_{}	mg/L
Fluorene	0.002	< 0.002 12	mg/L
Phenanthrene	0.002	< 0.002	mg/L
Anthracene	0.002	< 0.002	mg/L
Fluoranthene	0.002	< 0.002 R	mg/L
Pyrene	0.002	< 0.002	mg/L
Chrysene	0.001	< 0.001 12	mg/L
Benzo[a]anthracene	0.00013	< 0.00013 12	mg/L
Benzo[b]fluoranthene	0.00018	< 0.00018 12	mg/L
Benzo[k]fluoranthene	0.00017	< 0.00017 12	mg/L
Benzo[a]pyrene	0.0002	< 0.0002 12	mg/L
Indeno[1,2,3-cd]pyrene	0.0001	< 0.0001 2	mg/L
Dibenz[a,h]anthracene	0.0001	< 0.0001 12	mg/L
Benzo[g,h,i]perylene	0.0001	< 0.0001 12	mg/L

R: UNUSABLE

Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

Analytical Report

Client:

Burns & McDonnell

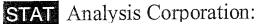
Project ID:

27194-4.07, Peoples Gas-Rogers Park

Sample Number:

RPM-MW02-001

STAT Project No.: 701830


STAT Sample No.: 917194

Date Received: 5/4/01

Date Taken: 5/4/01

Time Taken: 1415

Analyte	Detection Limit	Result	Units	Date Analyzed	Method
Total Cyanide	0.010	< 0.010	mg/L	5/9/01	9010B/9014
RCRA Metals					
Arsenic	0.010	< 0.010	mg/L	5/10/01	6020
Barium	0.010	0.020	mg/L	5/10/01	6020
Cadmium	0.005	< 0.005	mg/L	5/10/01	6020
Chromium	0.010	< 0.010	mg/L	5/10/01	6020
Lead	0.005	< 0.005	mg/L	5/10/01	6020
Mercury	0.0005	< 0.0005	mg/L	5/9/01	7470A
Selenium	0.020	< 0.020	mg/L	5/10/01	6020
Silver	0.010	< 0.010	mg/L	5/10/01	6020

2201 West Campbell Park Drive, Chicago, Illinois 60612-3547 Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

Analytical Report

Client:

Burns & McDonnell

Project ID:

27194-4.07, Peoples Gas-Rogers Park

Date Taken: 5/4/01

Date Received: 5/4/01

Sample Number:

RPM-MW03-001

Time Taken: 1320

STAT Project No: 701830 STAT Sample No.: 917193

Analyte	Detection Limit	Result	Units
Volatile Organic Compounds Metho	od 5030B/8260B		
Analysis Date: 5/9/01			
Acetone	0.010	< 0.010	mg/L
Benzene	0.005	< 0.005	mg/L
Bromodichloromethane	0.005	< 0.005	mg/L
Bromoform	0.005	< 0.005	mg/L
Bromomethane	0.010	< 0.010	mg/L
2-Butanone	0.010	< 0.010	mg/L
Carbon Disulfide	0.005	< 0.005	mg/L
Carbon Tetrachloride	0.005	< 0.005	mg/L
Chlorobenzene	0.005	< 0.005	mg/L
Chlorodibromomethane	0.005	< 0.005	mg/L
Chloroethane	0.010	< 0.010	mg/L
Chloroform	0.00015	< 0.00015	mg/L
Chloromethane	0.010	< 0.010	mg/L
1,1-Dichloroethane	0.005	< 0.005	mg/L
1,2-Dichloroethane	0.005	< 0.005	mg/L
1,1-Dichloroethene	0.005	< 0.005	mg/L
cis-1,2-Dichloroethene	0.005	< 0.005	mg/L
trans-1,2-Dichloroethene	0.005	< 0.005	mg/L
1,2-Dichloropropane	0.005	< 0.005	mg/L
cis-1,3-Dichloropropene	0.005	< 0.005	mg/L
trans-1,3-Dichloropropene	0.005	< 0.005	mg/L
Ethyl Benzene	0.005	< 0.005	mg/L
2-Hexanone	0.010	< 0.010	mg/L
4-Methyl-2-pentanone	0,010	< 0.010	mg/L
Methylene Chloride	0.010	< 0.010	mg/L
Styrene	0.005	< 0.005	mg/L
1,1,2,2-Tetrachloroethane	0.005	< 0.005	mg/L
Tetrachloroethene	0.005	< 0.005	mg/L
Toluene	0.005	< 0.005	mg/L
1,1,1-Trichloroethane	0.005	< 0.005	mg/L
1,1,2-Trichloroethane	0.005	< 0.005	mg/L

2201 West Campbell Park Drive, Chicago, Illinois 60612-3547

Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

Analytical Report

Client:

Burns & McDonnell

Project ID:

27194-4.07, Peoples Gas-Rogers Park

Date Received: 5/4/01

Sample Number:

RPM-MW03-001

Date Taken: 5/4/01

STAT Project No.: 701830

Time Taken: 1320

STAT Sample No.: 917193

Date Reported: 5/16/01

Analyte	Detection Limit	Result	Units
Trichloroethene	0.005	< 0.005	mg/L
Vinyl Acetate	0.010	< 0.010	mg/L
Vinyl Chloride	0.005	< 0.005	mg/L
Xylenes (total)	0.005	< 0.005	mg/L

Polynuclear Aromatic Hydrocarbons Method 8270C

Preparation Date:	5/8/01
Analysis Date:	5/8/01

1 Milary 516 Dates			
Naphthalene	0.001	< 0.001 R	mg/L
Acenapthylene	0.002	< 0.002 R	mg/L
Acenaphthene	0.002	< 0.002 2	mg/L
Fluorene	0.002	< 0.0022	mg/L
Phenanthrene	0.002	< 0.002 (2	mg/L
Anthracene	0.002	< 0.002 (2	mg/L
Fluoranthene	0.002	< 0.002 2	mg/L
Pyrene	0.002	< 0.002 12	mg/L
Chrysene	0.001	< 0.001 12	mg/L
Benzo[a]anthracene	0.00013	$0.00022\ {\it J}$	mg/L
Benzo[b]fluoranthene	0.00018	0.00038 ブ	mg/L
Benzo[k]fluoranthene	0.00017	0.00039J	mg/L
Benzo[a]pyrene	0.0002	0.00022ブ	mg/L
Indeno[1,2,3-cd]pyrene	0.0001	0.00036ブ	mg/L
Dibenz[a,h]anthracene	0.0001	0.00052 J	mg/L
Benzo[g,h,i]perylene	0.0001	0.00028 J	mg/L

C: UNUSABLE
J: ESTIMATED

Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

Analytical Report

Client:

Burns & McDonnell

Project ID:

27194-4.07, Peoples Gas-Rogers Park

Date Received: 5/4/01

Sample Number:

RPM-MW03-001

Date Taken: 5/4/01

STAT Project No.: 701830

Time Taken: 1320

STAT Sample No.: 917193

Analyte	Detection Limit	Result	Units	Date Analyzed	Method
Total Cyanide	0.010	< 0.010	mg/L	5/9/01	9010B/9014
RCRA Metals					
Arsenic	0.010	< 0.010	mg/L	5/10/01	6020
Barium	0.010	0.018	mg/L	5/10/01	6020
Cadmium	0005	< 0.005	mg/L	5/10/01	6020
Chromium	0.010	< 0.010	mg/L	5/10/01	6020
Lead	0.005	< 0.005	mg/L	5/10/01	6020
Mercury	0.0005	< 0.0005	mg/L	5/9/01	7470A
Selenium	0.020	< 0.020	mg/L	5/10/01	6020
Silver	0.010	< 0.010	mg/L	5/10/01	6020

Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

Analytical Report

Client:

Burns & McDonnell

Project ID:

27194-4.07, Peoples Gas-Rogers Park

Sample Number:

RPM-MW04-001

STAT Project No.: 701830

STAT Sample No.: 917196

Date Received: 5/4/01

Date Taken: 5/4/01

Time Taken: 1520

Analyte	Detection Limit	Result	Units
Volatile Organic Compounds Metho	od 5030B/8260B		
Analysis Date: 5/9/01			
Acetone	0.010	< 0.010	mg/L
Benzene	0.005	< 0.005	mg/L
Bromodichloromethane	0.005	< 0.005	mg/L
Bromoform	0.005	< 0.005	mg/L
Bromomethane	0.010	< 0.010	mg/L
2-Butanone	0.010	< 0.010	mg/L
Carbon Disulfide	0,005	< 0.005	mg/L
Carbon Tetrachloride	0.005	< 0.005	mg/L
Chlorobenzene	0.005	< 0.005	mg/L
Chlorodibromomethane	0.005	< 0.005	mg/L
Chloroethane	0.010	< 0.010	mg/L
Chloroform	0.00015	< 0.00015	mg/L
Chloromethane	0.010	< 0.010	mg/L
1,1-Dichloroethane	0.005	< 0.005	mg/L
1,2-Dichloroethane	0.005	< 0.005	mg/L
1,1-Dichloroethene	0.005	< 0.005	mg/L
cis-1,2-Dichloroethene	0.005	< 0.005	mg/L
trans-1,2-Dichloroethene	0.005	< 0.005	mg/L
1,2-Dichloropropane	0.005	< 0.005	mg/L
cis-1,3-Dichloropropene	0.005	< 0.005	mg/L
trans-1,3-Dichloropropene	0.005	< 0.005	mg/L
Ethyl Benzene	0.005	< 0.005	mg/L
2-Hexanone	0.010	< 0.010	mg/L
4-Methyl-2-pentanone	0.010	< 0.010	mg/L
Methylene Chloride	0.010	< 0.010	mg/L
Styrene	0.005	< 0.005	mg/L
1,1,2,2-Tetrachloroethane	0.005	< 0.005	mg/L
Tetrachloroethene	0.005	< 0.005	mg/L
Toluene	0.005	< 0.005	mg/L
1,1,1-Trichloroethane	0.005	< 0.005	mg/L
1,1,2-Trichloroethane	0.005	< 0.005	mg/L

2201 West Campbell Park Drive, Chicago, Illinois 60612-3547 Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

Analytical Report

Client:

Burns & McDonnell

Project ID:

27194-4.07, Peoples Gas-Rogers Park

Date Received: 5/4/01

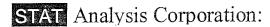
Sample Number:

RPM-MW04-001

Date Taken: 5/4/01 Time Taken: 1520

STAT Project No.: 701830

Date Reported: 5/16/01


STAT Sample No.: 917196

Analyte	Detection Limit	Result	Units
Trichloroethene	0.005	< 0.005	mg/L
Vinyl Acetate	0.010	< 0.010	mg/L
Vinyl Chloride	0.005	< 0.005	mg/L
Xylenes (total)	0.005	< 0.005	mg/L

Mar Aromatic Hydrocarhons Method 8270C

Polynuclear Aron	natic Hydrocarbons Met	noa 8270C		
Preparation Date:	5/8/01			
Analysis Date:	5/8/01			
Naphthalene		0.001	< 0.001 R	mg/L
Acenapthylene		0.002	< 0.002 Z	mg/L
Acenaphthene		0.002	< 0.002 (2	mg/L
Fluorene		0.002	< 0.002 /2	mg/L
Phenanthrene		0.002	< 0.002 2	mg/L
Anthracene		0.002	< 0.002 12	mg/L
Fluoranthene		0.002	$< 0.002 $ \bigcirc	mg/L
Pyrene		0.002	< 0.002 12	mg/L
Chrysene		0.001	< 0.001 12-	mg/L
Benzo[a]anthracen	e	0.00013	0.00018プ	mg/L
Benzo[b]fluoranthe	ene	0.00018	0.00019 J	mg/L
Benzo[k]fluoranthe	ene	0.00017	0.00019J	mg/L
Benzo[a]pyrene		0.0002	$0.0002\mathcal{J}$	mg/L
Indeno[1,2,3-cd]py	rene	0.0001	0.00014 J	mg/L
Dibenz[a,h]anthrac	ene	0.0001	0.00011	mg/L
Benzo[g,h,i]perylen	ne	0.0001	0.00011	mg/L

R: UNUSABLE J: ESTIMATED

2201 West Campbell Park Drive, Chicago, Illinois 60612-3547 Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

Analytical Report

Client:

Burns & McDonnell

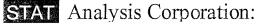
Project ID:

27194-4.07, Peoples Gas-Rogers Park

Date Received: 5/4/01

Sample Number:

RPM-MW04-001


Date Taken: 5/4/01

STAT Project No.: 701830

Time Taken: 1520

STAT Sample No.: 917196

Analyte	Detection Limit	Result	Units	Date Analyzed	Method
Total Cyanide	0.010	< 0.010	mg/L	5/9/01	9010B/9014
RCRA Metals					
Arsenic	0.010	< 0.010	mg/L	5/10/01	6020
Barium	0.010	0.129	mg/L	5/10/01	6020
Cadmium	0.005	< 0.005	mg/L	5/10/01	6020
Chromium	0.010	0.011	mg/L	5/10/01	6020
Lead	0.005	0.008	mg/L	5/10/01	6020
Mercury	0.0005	< 0.0005	mg/L	5/9/01	7470A
Selenium	0.020	< 0.020	mg/L	5/10/01	6020
Silver	0.010	< 0.010	mg/L	5/10/01	6020

2201 West Campbell Park Drive, Chicago, Illinois 60612-3547

Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

Analytical Report

Client:

Burns & McDonnell

Project ID:

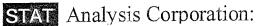
27193-4.07, Rogers Park Sub Shop

Sample Number:

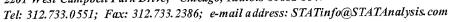
1, RPM-MW04-101

STAT Project No.: 701867

701067


STAT Sample No.: 917471

Date Received: 5/10/01


Date Taken: 5/10/01 Time Taken: PM

Date Reported: 5/18/01

Analyte	Detection Limit	Result	Units
Volatile Organic Compounds Method	d 5030B/8260B		
Analysis Date: 5/15/01			
Acetone	0.010	< 0.010	mg/L
Benzene	0.005	< 0.005	mg/L mg/L
Bromodichloromethane	0.005	< 0.005	mg/L
Bromoform	0.005	< 0.005	mg/L
Bromomethane	0.010	< 0.010	mg/L
2-Butanone	0.010	< 0.010	mg/L
Carbon Disulfide	0.005	< 0.005	mg/L
Carbon Tetrachloride	0.005	< 0.005	mg/L
Chlorobenzene	0.005	< 0.005	mg/L
Chlorodibromomethane	0.005	< 0.005	mg/L
Chloroethane	0.010	< 0.010	mg/L
Chloroform	0.00015	< 0.00015	mg/L
Chloromethane	0.010	< 0.010	mg/L
1,1-Dichloroethane	0.005	< 0.005	mg/L
1,2-Dichloroethane	0.005	< 0.005	mg/L
1,1-Dichloroethene	0.005	< 0.005	mg/L
cis-1,2-Dichloroethene	0.005	< 0.005	mg/L
trans-1,2-Dichloroethene	0.005	< 0.005	mg/L
1,2-Dichloropropane	0.005	< 0.005	mg/L
cis-1,3-Dichloropropene	0.005	< 0.005	mg/L
trans-1,3-Dichloropropene	0.005	< 0.005	mg/L
Ethyl Benzene	0.005	< 0.005	mg/L
2-Hexanone	0.010	< 0.010	mg/L
4-Methyl-2-pentanone	0.010	< 0.010	mg/L
Methylene Chloride	0.010	< 0.010	mg/L
Styrene	0.005	< 0.005	mg/L
1,1,2,2-Tetrachloroethane	0.005	< 0.005	mg/L
Tetrachloroethene	0.005	< 0.005	mg/L
Toluene	0.005	< 0.005	mg/L
1,1,1-Trichloroethane	0.005	< 0.005	mg/L
1,1,2-Trichloroethane	0.005	< 0.005	mg/L

2201 West Campbell Park Drive, Chicago, Illinois 60612-3547

Analytical Report

Client:

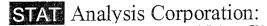
Burns & McDonnell

Project ID:

27193-4.07, Rogers Park Sub Shop

1, RPM-MW04-101

Sample Number: STAT Project No.: 701867


STAT Sample No.: 917471

Date Received: 5/10/01

Date Taken: 5/10/01 Time Taken: PM

Date Reported: 5/18/01

Analyte	Detection Limit	Result	Units
Trichloroethene	0.005	< 0.005	mg/L
Vinyl Acetate	0.010	< 0.010	mg/L
Vinyl Chloride	0.005	< 0.005	mg/L
Xylenes (total)	0.005	< 0.005	mg/L
Polynuclear Aromatic Hydrocarbons Preparation Date: 5/11/01 Analysis Date: 5/13/01	s Method 8270C		
Naphthalene	0.001	0.011	mg/L
Acenapthylene	0.002	< 0.002	mg/L
Acenaphthene	0.002	< 0.002	mg/L
Fluorene	0.002	< 0.002	mg/L
Phenanthrene	0.002	< 0.002	mg/L
Anthracene	0.002	< 0.002	mg/L
Fluoranthene	0.002	< 0.002	mg/L
Pyrene	0.002	< 0.002	mg/L
Chrysene	0.001	< 0.001	mg/L
Benzo[a]anthracene	0.00013	< 0.00013	mg/L
Benzo[b]fluoranthene	0.00018	< 0.00018	mg/L
Benzo[k]fluoranthene	0.00017	< 0.00017	mg/L
Benzo[a]pyrene	0.0002	< 0.0002	mg/L
Indeno[1,2,3-cd]pyrene	0.0001	< 0.0001	mg/L
Dibenz[a,h]anthracene	0.0001	< 0.0001	mg/L
Benzo[g,h,i]perylene	0.0001	< 0.0001	mg/L

2201 West Campbell Park Drive, Chicago, Illinois 60612-3547 Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

Analytical Report

Client:

Burns & McDonnell

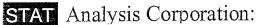
Project ID:

27193-4.07, Rogers Park Sub Shop

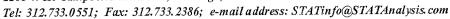
1, RPM-MW04-101

Sample Number: STAT Project No.: 701867

STAT Sample No.: 917471


Date Received: 5/10/01

Date Taken: 5/10/01


Time Taken: PM

Date Reported: 5/18/01

Analyte	Detection Limit	Result	Units	Date Analyzed	Method
Total Cyanide	0.010	< 0.010	mg/L	5/14/01	9010B/9014
RCRA Metals					
Arsenic	0.010	< 0.010	mg/L	5/17/01	6020
Barium	0.010	0.045	mg/L	5/17/01	6020
Cadmium	0.005	< 0.005	mg/L	5/17/01	6020
Chromium	0.010	< 0.010	mg/L	5/17/01	6020
Lead	0.005	< 0.005	mg/L	5/17/01	6020
Mercury	0.0005	< 0.0005	mg/L	5/16/01	7470A
Selenium	0.020	< 0.020	mg/L	5/17/01	6020
Silver	0.010	< 0.010	mg/L	5/17/01	6020

2201 West Campbell Park Drive, Chicago, Illinois 60612-3547

Analytical Report

Client:

Burns & McDonnell

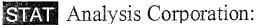
Project ID:

27193-4.07, Rogers Park Sub Shop

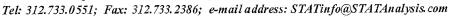
Sample Number:

2, RPM-MW05-001

STAT Project No.: 701867


STAT Sample No.: 917472

Date Taken: 5/10/01 Time Taken: 2:10pm


Date Reported: 5/18/01

Date Received: 5/10/01

Analyta	Detection Limit	Result	Units
Analyte		Result	CHIO
Volatile Organic Compounds Metho	od 5030B/8260B		
Analysis Date: 5/15/01			
Acetone	0.010	< 0.010	mg/L
Benzene	0.005	0.008	mg/L
Bromodichloromethane	0.005	< 0.005	mg/L
Bromoform	0.005	< 0.005	mg/L
Bromomethane	0.010	< 0.010	mg/L
2-Butanone	0.010	< 0.010	mg/L
Carbon Disulfide	0.005	< 0.005	mg/L
Carbon Tetrachloride	0.005	< 0.005	mg/L
Chlorobenzene	0.005	< 0.005	mg/L
Chlorodibromomethane	0.005	< 0.005	mg/L
Chloroethane	0.010	< 0.010	mg/L
Chloroform	0.00015	< 0.00015	mg/L
Chloromethane	0.010	< 0.010	mg/L
1,1-Dichloroethane	0.005	< 0.005	mg/L
1,2-Dichloroethane	0.005	< 0.005	mg/L
1,1-Dichloroethene	0.005	< 0.005	mg/L
cis-1,2-Dichloroethene	0.005	< 0.005	mg/L
trans-1,2-Dichloroethene	0.005	< 0.005	mg/L
1,2-Dichloropropane	0.005	< 0.005	mg/L
cis-1,3-Dichloropropene	0.005	< 0.005	mg/L
trans-1,3-Dichloropropene	0.005	< 0.005	mg/L
Ethyl Benzene	0.005	< 0.005	mg/L
2-Hexanone	0.010	< 0.010	mg/L
4-Methyl-2-pentanone	0.010	< 0.010	mg/L
Methylene Chloride	0.010	< 0.010	mg/L
Styrene	0.005	< 0.005	mg/L
1,1,2,2-Tetrachloroethane	0.005	< 0.005	mg/L
Tetrachloroethene	0.005	< 0.005	mg/L
Toluene	0.005	< 0.005	mg/L
1,1,1-Trichloroethane	0.005	< 0.005	mg/L
1,1,2-Trichloroethane	0.005	< 0.005	mg/L

2201 West Campbell Park Drive, Chicago, Illinois 60612-3547

Analytical Report

Client:

Burns & McDonnell

Project ID:

27193-4.07, Rogers Park Sub Shop

Sample Number:

2, RPM-MW05-001

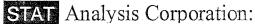
STAT Sample No.: 917472

STAT Project No.: 701867

Date Received: 5/10/01

Date Taken: 5/10/01

Time Taken: 2:10pm


Date Reported: 5/18/01

Detection Limit	Result	Units
0.005	< 0.005	mg/L
0.010	< 0.010	mg/L
0.005	< 0.005	mg/L
0.005	0.007	mg/L
	0.005 0.010 0.005	0.005 $< 0.0050.010$ $< 0.0100.005$ < 0.005

Polynuclear Aromatic Hydrocarbons Method 8270C

Preparation Date:	5/11/01
Analysis Date:	5/13/01

Naphthalene	0.001	< 0.001	mg/L
Acenapthylene	0.002	< 0.002	mg/L
Acenaphthene	0.002	< 0.002	mg/L
Fluorene	0.002	< 0.002	mg/L
Phenanthrene	0.002	< 0.002	mg/L
Anthracene	0.002	< 0.002	mg/L
Fluoranthene	0.002	< 0.002	mg/L
Pyrene	0.002	< 0.002	mg/L
Chrysene	0.001	< 0.001	mg/L
Benzo[a]anthracene	0.00013	< 0.00013	mg/L
Benzo[b]fluoranthene	0.00018	< 0.00018	mg/L
Benzo[k]fluoranthene	0.00017	< 0.00017	mg/L
Benzo[a]pyrene	0.0002	< 0.0002	mg/L
Indeno[1,2,3-cd]pyrene	0.0001	< 0.0001	mg/L
Dibenz[a,h]anthracene	0.0001	< 0.0001	mg/L
Benzo[g,h,i]perylene	0.0001	< 0.0001	mg/L

2201 West Campbell Park Drive, Chicago, Illinois 60612-3547 Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

Analytical Report

Client:

Burns & McDonnell

Project ID:

27193-4.07, Rogers Park Sub Shop

Sample Number:

2, RPM-MW05-001

STAT Project No.: 701867

STAT Sample No.: 917472

Time Taken: 2:10pm Date Reported: 5/18/01

Date Received: 5/10/01

Date Taken: 5/10/01

· -				
Detection Limit	Result	Units	Date Analyzed	Method
0.010	< 0.010	mg/L	5/14/01	9010B/9014
0.010	< 0.010	mg/L	5/17/01	6020
0.010	0.112	mg/L	5/17/01	6020
0.005	< 0.005	mg/L	5/17/01	6020
0.010	< 0.010	mg/L	5/17/01	6020
0.005	0.008	mg/L	5/17/01	6020
0.0005	< 0.0005	mg/L	5/16/01	7470A
0.020	< 0.020	mg/L	5/17/01	6020
0.010	< 0.010	mg/L	5/17/01	6020
	0.010 0.010 0.010 0.005 0.010 0.005 0.0005 0.0005	0.010 < 0.010	0.010 < 0.010	0.010 < 0.010

Quality Assurance / Quality Control

The Peoples Gas Light and Coke Company
The Rogers Park Sub-Shop
Main Parcel

Soil Laboratory Blank Analysis Data Sheets

The Peoples Gas Light and Coke Company
The Rogers Park Sub-Shop
Main Parcel

EPA SAMPLE NO	EPA	A SAMPLE	E N	0
---------------	------------	----------	-----	---

Lab Name:	STAT Analysis		Contract.		VBEROSOOT
Lab Code:		Case No.: 701817	SAS No.:	SDC	9 No ::
Lab File ID:	05060103.D		Lab Sa	ample ID: <u>V</u>	BLK050601
Date Analyze	d: 05/06/01		Time /	Analyzed: 1	4:55
GC Column:	RTX502. ID:	0.25 (mm)	Heate	ed Purge: (Y/	N) <u>Y</u>
nstrument ID	VOC-1				

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	EPA	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	VLCS050601	VLCS050601	05060104.D	15:29
02	RPM-SB30-002D	917043 B&M 701817 1:40	05060105.D	16:03
03	RPM-SB30-003D	917044 B&M 701817 1:39	05060106.D	16:38
04	RPM-SB61-003D	917053 B&M 701817 1:45	05060107.D	17:12
05	RPM-SB61-004D	917054 B&M 701817 1:82	05060108.D	17:46
06	RPM-SB29A-002D	917041 B&M 701817 1:37	05060109.D	18:20
07	RPM-SB29A-002MS	917041MS B&M 701817 1	05060110.D	18:54
08	RPM-SB29A-002MS	917041MSD B&M 701817	05060111.D	19:28
09	RPM-SB30-002D	917043 B&M 701817 1:80	05060112.D	20:03
10	RPM-SB61-004D	917054 B&M 701817 1:20	05060113.D	20:37
11	RPM-SB61-003D	917053 B&M 701817 1:45	05060114.D	21:12
12	RPM-SB30-001D	917042 B&M 701817 1:40	05060115.D	21:46
13	RPM-SB30-003D	917044 B&M 701817 1:39	05060116.D	22:20
14	RPM-SB33-004	917037 B&M 701817 1:39	05060117.D.	22:54

Spike Recovery and RPD Summary Report - WATER

Method : C:\HPCHEM\1\DATA\050601\5035.M (Chemstation Integrator)
Title : Method 8260
Last Update : Fri Apr 27 06:53:02 2001
Response via : Initial Calibration

Non-Spiked Sample: 05060103.D

Spike

Spike

Sample

Duplicate Sample

05060104.D VLCS050601

File ID: 05060104.D Sample: VLCS050601 Acq Time: 6 May 2001 3:29 pm

3:29 pm 6 May 2001

Acq Time: 6 May 20		:29 pm				ay 200.		. 23 pi	
Compound	Sample Conc	Spike Added	spike Rės	Dup Res	Spike %Rec	Dup %Rec	RPD	QC RPD	Limits % Rec
Dichlorodifluorometh Chloromethane Vinyl chloride Bromomethane Chloroethane Trichloroethane Trichloroethene Methylene chloride trans-1,2-Dichloroeth 1,1-Dichloroethane 2,2-Dichloropropane cis-1,2-Dichloroethene Chloroform Bromochloromethane 1,1-Trichloroethan 1,1-Dichloropropene Carbon tetrachloride 1,2-Dichloropropane Benzene Trichloroethene 1,2-Dichloropropane Bromodichloromethane Dibromomethane Toluene 1,1,2-Trichloroethan 1,3-Dichloropropane Tetrachloroethene Dibromochloromethane Toluene 1,1,2-Trichloropropane Tetrachloroethene Dibromochloromethane 1,1,2-Tetrachloroe M&p-Xylene Styrene Isopropylbenzene Bromoform 1,1,2,2-Tetrachloroe 1,2,3-Trichloropropa n-Propylbenzene Bromobenzene 1,3,5-Trimethylbenze 2-Chlorotoluene tert-Butylbenzene 1,2,4-Trimethylbenze 1,2,4-Trimethylbenze 1,2-Dichlorobenzene	0.0000000000000000000000000000000000000	50000000000000000000000000000000000000	648887331121281323322600982868010510123817122121642407703 67586766655665566556655566655766655766655766655766655766655766655766655766655766655766655766655766655766655766655766655766655766655766665576665576665576665576665576665576665576665576665576665576666557666655766665576666557666655766665576666557666655766665576666557666655766665576666557666655766665576666557666655766665576666655766665576666557666655766665576666557666655766665576666557666665576666557666655766665576666557666665576666655766666557666665576666655766666557666666	48887331121281323322600982868010510123817122121642407703 1666556655665566556655666555666555666655766655565	127 157# 116 134 146 1121 1221 123 1127 124 1120 1121 127 124 1104 1112 1121 11	127 # 127 128 129 122 123 122 123 124 121 122 123 124 125 124 125 124 127 129 124 125 125 125 125 125 125 126 127 127 127 127 127 127 127 127 127 127	000000000000000000000000000000000000000	25 25 25 25 25 25 25 25 25 25 25 25 25 2	50-150 5

EPA SAMPLE NO.

_ab Name:	STAT Analysis		Contract:	VBLK050501
_ab Code:		Case No.: 701817	7 SAS No.:	SDG No.:
_ab File ID:	05050103.D		Lab Sample ID:	VBLK050501
Date Analyze	d: 05/05/01		Time Analyzed:	20:03
GC Column:	RTX502. ID:	0.25 (mm)	Heated Purge:	(Y/N) Y
nstrument ID	: VOC-1			•

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	TIME ANALYZED
01	VLCS050501	VLCS050501	05050104.D	20:37
02	RPM-SB29-002R	917039R B&M 701817	05050113.D	01:45
03	RPM-SB32-001R	917048R B&M 701817	05050114.D	02:19
04	RPM-SB61-001R	917051R B&M 701817	05050115.D	02:53
05	RPM-SB60-001R	917055R B&M 701817	05050116.D	03:28
06	RPM-SB33-001	917034 B&M 701817	05050117.D	04:02
07	RPM-SB33-002	917035 B&M 701817	05050118.D	04:36
08	RPM-SB33-003	917036 B&M 701817	05050119.D	05:10
09	RPM-SB33-004D	917037 B&M 701817 1:43	05050120.D	05:44
10	RPM-SB30-001D	917042 B&M 701817 1:40	05050121.D	06:18

Spike Recovery and RPD Summary Report - WATER

: C:\HPCHEM\1\DATA\050501\5035.M (Chemstation Integrator) : Method 8260 Method

Title

Last Update : Fri Apr 27 06:53:02 2001 Response via : Initial Calibration

Non-Spiked Sample: 05050103.D

Spike		Spike _	
Sample		Duplicate Sample	7

| 05050104.D

File ID: 05050104.D Sample: VLCS050501 Acq Time: 5 May 2001 8:37 pm VLCS050501

5 May 2001 8:37 pm

Acq Time: 5 May 20		:37 pm				ay 200.		pi	
Compound	Sample Conc	Spike Added	Spike Res	Dup Res	Spike %Rec	Dup %Rec	RPD	QC RPD	Limits % Rec
Dichlorodifluorometh Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene Methylene chloride trans-1,2-Dichloroet 1,1-Dichloropropane cis-1,2-Dichloroethe Chloroform Bromochloromethane 1,1-Trichloroethan 1,1-Dichloropropene Carbon tetrachloride 1,2-Dichloropropane Bromodichloromethane Trichloroethene 1,2-Dichloropropane Bromodichloromethane Dibromomethane Toluene 1,1,2-Trichloroethan 1,3-Dichloropropane Tetrachloroethene Dibromochloromethane Chlorobenzene Ethylbenzene 1,1,2-Tetrachloroe m&p-Xylene O-Xylene Styrene Isopropylbenzene Bromoform 1,1,2,2-Tetrachloroe 1,2,3-Trichloropropa n-Propylbenzene Bromoform 1,1,2,2-Tetrachloroe 1,2,3-Trichloropropa n-Propylbenzene Bromobenzene 1,3,5-Trimethylbenze 2-Chlorotoluene 4-Chlorotoluene tert-Butylbenzene Bromobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,2-Dichlorobenzene	0.0000000000000000000000000000000000000	50000000000000000000000000000000000000	700939444353018229141069240395820641183550448444444444653334	7009394435300182291410692403958206411835048586156243093333 675656665666655556566455555555545564444444	141 160# 119 125 127 129 124 128 123 100 113 124 128 127 126 127 128 129 116 101 117 118 107 119 1107 1107 1108 1109	141 140# 1409 1379 129 1219 12	000000000000000000000000000000000000000	22555555555555555555555555555555555555	50-150 5

EPA SAMPLE NO.

Lab Name:	STAT Analysis		Contract	VBLK051101
Lab Code:		Case No. 701824	SAS NoS	DG No.:
Lab File ID:	05110103.D	*	Lab Sample ID:	VBLK051101
Date Analyze	d: <u>05/11/01</u>		Time Analyzed:	07:31
GC Column:	RTX502. ID:	0.25 (mm)	Heated Purge: (Y/N) Y
nstrument ID	VOC-1			

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	EPA	LAB	LAB	TIME
	SAMPLE NO	SAMPLE ID	FILE ID	ANALYZED
01	VLCS051101	VLCS051101	05110104.D	08:05
02	RPM-SB34-001	917101 B&M 701824	05110109.D	10:56
03	RPM-SB41-001	917102 B&M 701824	05110110.D	11:30
04	RPM-SB40-001	917103 B&M 701824	05110111.D	12:04
05	RPM-SB40-002	917104 B&M 701824	05110112.D	12:38
06	RPM-SB40-003	917105 B&M 701824	05110113.D	13:13
07	RPM-SB47-001	917106 B&M 701824	05110114.D	13:47
08	RPM-SB46-001	917107 B&M 701824	05110115.D	14:22
09	RPM-SB46-002	917108 B&M 701824	05110116.D	14:56
10	RPM-SB45-001	917109 B&M 701824	05110117.D	15:30
11	RPM-SB44-001	917110 B&M 701824	05110118.D	16:04
12	RPM-SB44-002	917111 B&M 701824	05110119.D	16:38
13	RPM-SB43-001	917112 B&M 701824	05110120.D	17:13
14	RPM-SB43-001	917113 B&M 701824	05110121.D	17:47
15	RPM-SB42-001	917114 B&M 701824	05110122.D	18:21

Spike Recovery and RPD Summary Report - WATER

Method : C:\HPCHEM\1\DATA\051101\5035.M (Chemstation Integrator)

Title : Method 8260

Last Update : Fri Apr 27 06:53:02 2001 Response via : Initial Calibration

Non-Spiked Sample: 05110103.D

Spike Spike

sample Duplicate Sample

File ID : 05110104.D Sample : VLCS051101 Acq Time: 11 May 2001 8:05 am | 05110104.D | VLCS051101

| 11 May 2001 8:05 am

Compound	Sample Conc	Spike Added	Spike Res	Dup Res	Spike %Rec	Dup %Rec	RPD	QC RPD	Limits % Rec
Dichlorodifluorometh Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluorometha 1,1-Dichloroethene Methylene chloride trans-1,2-Dichloroet 1,1-Dichloroethane 2,2-Dichloropropane cis-1,2-Dichloroethe Chloroform Bromochloromethane 1,1-Trichloroethan 1,1-Dichloropropene Carbon tetrachloride 1,2-Dichloropropane Benzene Trichloroethene 1,2-Dichloropropane Bromodichloromethane Dibromomethane Toluene 1,1,2-Trichloroethan 1,3-Dichloropropane Tetrachloroethene Dibromochloromethane Chlorobenzene Ethylbenzene 1,1,1,2-Tetrachloroe m&p-Xylene Styrene Isopropylbenzene Bromoform 1,1,2,2-Tetrachloroe 1,2,3-Trichloropropa n-Propylbenzene Bromoform 1,1,2,2-Tetrachloroe 1,2,3-Trichloropropa n-Propylbenzene Bromobenzene 1,3,5-Trimethylbenze 2-Chlorotoluene 4-Chlorotoluene 4-Chlorotoluene 4-Chlorotoluene 1,2,4-Trimethylbenze 1,3-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dibromo-3-chloro Naphthalene Hexachlorobutadiene	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	50000000000000000000000000000000000000	59127255373536545867357459226455456591453677676398089766 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	29127255373536545867357459226455456591453677676398089760 5654564555555555555555555555555555555	105 137 102 73 113 125 90 110 110 110 110 111 110 111 111 111	105 107 107 1130 1130 1140 1157 1157 1157 1157 1157 1157 1157 115	000000000000000000000000000000000000000	25 25 25 25 25 25 25 25 25 25 25 25 25 2	50-150 5

EPA SAMPLE NO.

Lab Name:	STAT Analysis		Contract:		VBLK051201	
Lab Code:		Case No.: 701824	SAS No.	SI	DG No.	
Lab File ID:	05120103.D	·	Lab S	Sample ID:	VBLK051201	_
Date Analyze	d: 05/13/01		Time	Analyzed	02:16	
GC Column:	RTX502. ID	0.25 (mm)	Hea	ted Purge: ((Y/N) Y	
Instrument ID): VOC-1					

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	EPA SAMPLE NO	LAB SAMPLE ID	LAB FILE ID	TIME ANALYZED
01	VLCS051201	VLCS051201	05120104.D	02:50
02	RPM-SB34-001R	917101R B&M 701824	05120105.D	03:24
03	RPM-SB47-001R	917106R B&M 701824	05120106.D	03:58
04	RPM-SB46-002R	917108R B&M 701824	05120107.D	04:32
05	RPM-SB43-001R	917112R B&M 701824	05120108.D	05:07
06	RPM-SB42-002R	917114R B&M 701824	05120109.D	05:41
07	RPM-SB52-001R	917117R B&M 701824	05120110.D	06:15
08	RPM-SB58-001R	917121R B&M 701824	05120111.D	06:49
09	RPM-SB53-001R	917123R B&M 701824	05120112.D	07:24

Spike Recovery and RPD Summary Report - WATER

Method : C:\HPCHEM\1\DATA\051201\5035.M (Chemstation Integrator)

Title : меthod 8260

Last Update : Fri Apr 27 06:53:02 2001

Response via: Initial Calibration

Non-Spiked Sample: 05120103.D

Spike Spike Sample Duplicate Sample

File ID: 05120104.D .
Sample: VLCS051201
Acq Time: 13 May 2001 2:50 am

| 05120104.D | VLCS051201 | 13 May 2001 2:50 am

Acq Time. 13 May 20		. 30 am				ay 200 		:50 ai	n
Compound	Sample Conc	Spike Added	Spike Res	Dup Res	Spike %Rec	Dup %Rec	RPD	QC RPD	Limits % Rec
Dichlorodifluorometh Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene Methylene chlorode trans-1,2-Dichloroethane 2,2-Dichloropropane cis-1,2-Dichloropropane cis-1,2-Dichloropropene Carbon tetrachloride 1,1-Trichloroethane 1,1-Trichloroethane 1,2-Dichloropropane Bromodichloromethane Toluene 1,2-Dichloropropane Bromodichloromethane Dibromomethane Toluene 1,1,2-Trichloroethane 1,2-Dibromoethane Chlorobenzene Ethylbenzene 1,1,1,2-Tetrachloroe m&p-Xylene Styrene Isopropylbenzene Bromoform 1,1,2,2-Tetrachloroe 1,2,3-Trichloropropa n-Propylbenzene Bromobenzene 1,3,5-Trimethylbenze 2-Chlorotoluene 4-Chlorotoluene 4-Chlorotoluene 4-Chlorotoluene 1,2,4-Trimethylbenze 2-Chlorotoluene 1,2,4-Trimethylbenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dibromo-3-chloro Naphthalene Hexachlorobutadiene 1 2 4-Trichlorobenzene 1	0.00.00.00.00.00.00.00.00.00.00.00.00.0	50000000000000000000000000000000000000	571 771 777 777 777 777 777 777 777 777	57171112786964640485340549355599013601078308133882037788460 57571112786964640485340549355599013601078308133882037788460 445444	114 143 114 114 114 114 115 116 117 118 118 119 111 118 119 119 119 119 119	114 143 114 114 114 114 114 115 116 117 118 118 118 118 118 119 118 119 119 119	000000000000000000000000000000000000000	25555555555555555555555555555555555555	50-150 5

EPA SAMPLE NO.

VBLK051101

Lab Name:	STAT Analysis		Contract:	12211001101
Lab Code:		Case No.: 701830	SAS No.: SD	G No.:
Lab File ID:	05110103.D		Lab Sample ID:	VBLK051101
Date Analyze	ed: 05/11/01		Time Analyzed:	10:11
GC Column:	DB-VRX ID:	<u>0.25</u> (mm)	Heated Purge: (\	//N) <u>Y</u>
Instrument IF	D: VOC-3			

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	EPA	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	VLCS051101	VLCS051101	05110104.D	10:47
02	RPM-SB50-001	917168 B&M 701830	05110111.D	15:07
03	RPM-SB50-002	917169 B&M 701830	05110112.D	15:43
04	RPM-SB50-004	917171 B&M 701830	05110113.D	16:27
05	RPM-SB49-001	917172 B&M 701830	05110114.D	17:03
06	RPM-SB49-002	917173 B&M 701830	05110115.D	17:40
07	RPM-SB48-001	917174 B&M 701830	05110116.D	18:17
08	RPM-SB48-002	917175 B&M 701830	05110117.D	18:53
09	RPM-SB55-001	917176 B&M 701830	05110118.D	19:30
10	RPM-SB55-002	917177 B&M 701830	05110119.D	20:07
11	RPM-SB55-003	917178 B&M 701830	05110120.D	20:42

Spike Recovery and RPD Summary Report - SOIL

: H:\MSDCHEM\1\DATA\051101\5035.M (Chemstation Integrator) Method

: Method 8260 Title

Last Update : Wed May 09 15:45:24 2001 Response via : Initial Calibration

Non-Spiked Sample: 05110103.D

Spike	Spike
Spine	

Duplicate Sample Sample

File ID: 05110104.D | 05110104.D | Sample: VLCS051101 | VLCS051101 | Acq Time: 11 May 2001 10:47 am | 11 May 2001 10:47 am

ACQ TIME. II May 20		. 47 am							
Compound	Sample Conc	Spike Added	Spike Res	Dup Res	Spike %Rec	Dup %Rec	RPD	QC RPD	Limits % Rec
Dichlorodifluorometh Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene Methylene chloride trans-1,2-Dichloroethane 2,2-Dichloropropane cis-1,2-Dichloroethane 1,1-Trichloroethane 1,1-Trichloroethane 1,2-Dichloropropene Carbon tetrachloride 1,2-Dichloropropane Bromodichloromethane 1,2-Dichloropropane Bromodichloromethane Dibromomethane Toluene 1,1,2-Trichloroethan 1,3-Dichloropropane Tetrachloroethene Dibromochloromethane Chlorobenzene Ethylbenzene 1,1,1,2-Tetrachloroe M&p-Xylene Styrene Isopropylbenzene Bromoform 1,1,2,2-Tetrachloroe 1,2,3-Trichloropropa n-Propylbenzene Bromobenzene 1,3,5-Trimethylbenze 2-Chlorotoluene 4-Chlorotoluene tet-Butylbenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,2-Dichlorobenzene	1.05.0000000000000000000000000000000000	50000000000000000000000000000000000000	73 127 127 127 127 129 127 127 129 129 129 129 129 129 129 129 129 129	737299790639066457481705886586547977092655372224333399170686 1999996644544444444444444545555555554545454	147 # 151# 191# 194# 1999 113368 1911 1999 1033 1033 1045 1054 1054 1054 1054 1054 1054 1054	194#	000000000000000000000000000000000000000	255555225555555145555155555555555555555	50-150 5

Case No.: 701830

EPA SAMPLE NO.

VBLK051501 Contract: SAS No.: SDG No.: Lab Sample ID: VBLK051501 Time Analyzed: 16:59

Heated Purge: (Y/N)

GC Column: DB-VRX ID: 0.25 (mm)

Date Analyzed: 05/15/01

Instrument ID: VOC-3

05150103.D

Lab Name: STAT Analysis

Lab Code:

Lab File ID:

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	EPA	LAB	LAB	TIME
	SAMPLE NO	SAMPLE ID	FILE ID	ANALYZED
01	VLCS051501	VLCS051501	05150104.D	17:36
02	RPM-SB56-001	917179 B&M 701830	05150106.D	18:12
03	RPM-SB56-002	917180 B&M 701830	05150107.D	18:49
04	RPM-SB56-003	917181 B&M 701830	05150108.D	19:25
05	RPM-SB56-004	917182 B&M 701830	05150109.D	20:02
06	RPM-SB56-005	917183 B&M 701830	05150110.D	20:38
07	RPM-SB57-001	917184 B&M 701830	05150111.D	21:14
08	RPM-SB57-002	917185 B&M 701830	05150112.D	21:49
09	RPM-SB54-001	917186 B&M 701830	05150113.D	22:25
10	RPM-SB54-002	917187 B&M 701830	05150114.D	23:00
11	RPM-SB54-003	917188 B&M 701830	05150115.D	23:37
12	RPM-SB39-001	917189 B&M 701830	05150116.D	00:13
13	RPM-SB39-002	917190 B&M 701830	05150117.D	00:48
14	RPM-SB39-003	917191 B&M 701830	05150118.D	01:32

Spike Recovery and RPD Summary Report - SOIL

: H:\MSDCHEM\1\DATA\051501\5035.M (Chemstation Integrator) Method

: Method 8260 Title

Last Update : Wed May 09 15:45:24 2001 Response via : Initial Calibration

Non-Spiked Sample: 05150103.D

Spike Spike Duplicate Sample Sample

| 05150104.D | VLCS051501 | 15 May 2001 File ID: 05150104.D Sample : VLCS051501

Acq Time: 15 May 2001 5:36 pm 5:36 pm

Acq 1111e. 13 May 20									
Compound	Sample Conc	Spike Added	Spike Res	Dup Res	Spike %Rec	Dup %Rec	RPD	QC RPD	Limits % Rec
Dichlorodifluorometh Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene Methylene chloride trans-1,2-Dichloroethane 2,2-Dichloropropane cis-1,2-Dichloroethane 1,1-Trichloroethane 1,1-Trichloroethane 1,1-Dichloropropene Carbon tetrachloride 1,2-Dichloropropane Benzene Trichloroethene 1,2-Dichloropropane Bromodichloromethane Dibromomethane Toluene 1,1,2-Trichloroethan 1,3-Dichloropropane Tetrachloroethene Dibromochloromethane Chlorobenzene Ethylbenzene 1,1,1,2-Tetrachloroe m&p-xylene 0-xylene Styrene Isopropylbenzene Bromoform 1,1,2,2-Tetrachloroe m.2,3-Trichloropropa n-Propylbenzene Bromoform 1,1,2,2-Tetrachloroe m.2,3-Trichloropropa n-Propylbenzene 1,3,5-Trimethylbenze 2-Chlorotoluene 4-Chlorotoluene 4-Chlorotoluene 4-Chlorotoluene 1,2,4-Trimethylbenze 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene	0.04.00.00.00.00.00.00.00.00.00.00.00.00	500 500 500 500 500 500 500 500 500 500	36 38 36 38 316 37 37 37 37 37 37 37 37 37 37 37 37 37	-6 382604727677476164945808999702049100194828999789556495259 333145333333333333333333333333333333333	725 725 725 725 725 736 731 731 731 731 731 731 731 731 731 731	72 72 75 64 80 77 80 80 77 80 80 80 80 80 80 80 80 80 80 80 80 80	000000000000000000000000000000000000000	25 25 25 25 25 25 25 25	50-150 5

EPA SAMPLE NO.

Lab Name:	STAT Analysis		Contract	VBLK051101A
Lab Code		Case No. 701824	SAS No SD	G No.:
Lab File ID:	05110103.D		Lab Sample ID: \	/BLK051101A
Date Analyze	ed 05/11/01	N AAAAAA AANAA	Time Analyzed: 2	22:11
GC Column:	RTX502. ID:	0.25 (mm)	Heated Purge. (Y	′/N) <u>Y</u>
nstrument IE	VOC-1			

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD

	EPA	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	VLCS051101A	VLCS051101A	05110104.D	22:45
02	RPM-SB51-001	917115 B&M 701824	05110105.D	23:19
03	RPM-SB51-002	917116 B&M 701824	05110106.D	23:53
04	RPM-SB52-001	917117 B&M 701824	05110107.D	00.27
05	RPM-SB52-002	917118 B&M 701824	05110108.D	01:01
06	RPM-SB59-001	917119 B&M 701824	05110109.D	01:35
07	RPM-SB59-002	917120 B&M 701824	05110110.D	02:09
08	RPM-SB58-001	917121 B&M 701824	05110111.D	02:43
09	RPM-SB58-002	917122 B&M 701824	05110112.D	03:17
10	RPM-SB53-001	917123 B&M 701824	05110113.D	03:51
11	RPM-SB53-002	917124 B&M 701824	05110114.D	04:25

Spike Recovery and RPD Summary Report - WATER

: C:\HPCHEM\1\DATA\051101A\5035.M (Chemstation Integrator) Method

Title : Method 8260

Last Update : Fri Apr 27 06:53:02 2001

Response via: Initial Calibration

Non-Spiked Sample: 05110103.D

Spike Spike Sample Duplicate Sample

File ID : 05110104.D Sample : VLCS051101a Acq Time: 11 May 2001 10:45 pm | 05110104.D VLCS051101a

11 May 2001 10:45 pm

Conc Added Res										
Chloromethane	Compound							RPD		Limits % Rec
Bromomethane	Dichlorodifluorometh Chloromethane Vinyl chloride	0.0	50	79	79	158#	158#	0	25	50-150 50-150 50-150
Chloroethane	Bromomethane	0.0								
Trichloroftluoromethal 0.0 50 68 68 136 136 0 25 50-150		0.0	50							
1.1-Dichloroethene		0.0				136	136			
trans-1,2-pichloroeth 0.0 50 46 46 92 92 0 25 50-150 2,2-Dichloroethane 0.0 50 56 56 112 112 0 25 50-150 2,2-Dichloropropane 0.0 50 53 53 107 107 0 25 50-150 2,2-Dichloropropane 0.0 50 53 53 106 106 0 25 50-150 2,2-Dichloropropane 0.0 50 53 53 106 106 0 25 50-150 2,2-Dichloropropane 0.0 50 54 54 108 108 0 25 50-150 2,1-Dichloropropane 0.0 50 56 56 112 112 0 25 50-150 2,1-Dichloropropane 0.0 50 61 61 123 123 0 25 50-150 2,1-Dichloropropane 0.0 50 64 64 127 127 0 25 50-150 2,2-Dichloropropane 0.0 50 64 64 127 127 0 25 50-150 2,2-Dichloropropane 0.0 50 53 53 106 106 0 11 76-127 2,2-Dichloropropane 0.0 50 53 53 106 106 0 11 76-127 2,2-Dichloropropane 0.0 50 53 53 106 106 0 11 76-127 2,2-Dichloropropane 0.0 50 53 53 106 106 0 11 76-127 2,2-Dichloropropane 0.0 50 50 50 101 101 0 25 50-150 2,2-Dichloropropane 0.0 50 50 50 50 101 101 0 25 50-150 2,1,2-Trichloroethan 0.0 50 53 53 107 107 0 25 50-150 2,1,2-Trichloropropane 0.0 50 50 50 50 99 99 0 13 76-125 2,3-Dichloropropane 0.0 50 56 56 112 112 0 25 50-150 2-Dibromocthloromethane 0.0 50 50 50 50 101 101 0 25 50-150 2-Dibromocthloromethane 0.0 50 50 50 50 100 100 0 13 75-130 2-Dibromocthloromethane 0.0 50 50 50 50 100 100 0 25 50-150 2-Dibromocthloromethane 0.0 50 50 50 50 100 100 0 25 50-150 2-Dibromocthloromethane 0.0 50 50 50 50 100 100 0 25 50-150 2-Dibromocthloropropal 0.0 50 50 50 50 100 100 0 25 50-150 2-Dibromocthloropropal 0.0 50 50 50 100 100 0 25 50-150 2-Dibromocthloropropal 0.0 50 50 50 50 50 50 5						90	90		14	61-145
Crans-1, 2-Dichloroet 0.0 50 46 46 92 92 0 25 50-150					56				25	
2.2-Dichloropropane 0.0 50 53 53 107 107 0 25 50-150 chloroform 0.0 50 53 53 106 106 0 25 50-150 chloroform 0.0 50 55 55 109 109 0 25 50-150 chloroform 0.0 50 54 54 108 108 0 25 50-150 chloroform 0.0 50 54 54 108 108 0 25 50-150 chloroform 0.0 50 56 56 112 112 0 25 50-150 chloroform 0.0 50 61 61 123 123 0 25 50-150 chloroform 0.0 50 66 61 123 123 0 25 50-150 chloroform 0.0 50 66 66 112 112 0 25 50-150 chloroform 0.0 50 64 64 127 112 0 25 50-150 chloroform 0.0 50 56 56 112 112 0 25 50-150 chloroform 0.0 50 53 53 106 106 0 11 76-127 chloroform 0.0 50 53 53 106 106 0 11 76-127 chloroformomethane 0.0 50 56 56 112 112 0 25 50-150 chloromomethane 0.0 50 50 50 101 101 0 25 50-150 chloromomethane 0.0 50 57 57 113 113 0 25 50-150 chloromothoromethane 0.0 50 57 57 113 113 0 25 50-150 chloromothoromethane 0.0 50 56 56 112 112 0 25 50-150 chloromothoromethane 0.0 50 56 56 112 112 0 25 50-150 chloromothoromethane 0.0 50 56 56 112 112 0 25 50-150 chloromothoromethane 0.0 50 50 50 100 100 0 25 50-150 chloromothoromethane 0.0 50 51 51 102 102 0 25 50-150 chloromothoromethane 0.0 50 51 51 103 103 0 25 50-150 chloromothoromethane 0.0 50 51 51 103 103 0 25 50-150 chloromothoromethane 0.0 50 51 51 103 103 0 25 50-150 chloromothoromethane 0.0 50 51 51 103 103 0 25 50-150 chloromothoromethane 0.0 50 50 50 100 100 0 25 50-150 chloromothoromethane 0.0 50 50 50 50 50 50 chloromothoromethane 0.0 50 50 50 50 50 50 chloromothoromethane 0.0 50 50 50 50 50 50 chlo		,								50-150
Cis-1, 2-Dichloroethel	1,1-Dichloroethane				56					50-150
Chloroform Snomochloromethane O.O	2,2-Dichioropropane									
### Remote Note	Chloroform			23	23					
					22					
L.1-Dichloropropene										
Carbon tetrachloride										
1,2-0ichloroethane									23	
Senzene										
Trichloroethene	3énzene									
.,2-pichloropropane	[rich]oroethene							_		
## Architecture 0.0 50 56 56 112 112 0 25 50-150 ## or in bromomethane 0.0 50 57 57 113 113 0 25 50-150 ## or in bromomethane 0.0 50 50 50 50 99 99 0 13 76-125 ## or in the properties 0.0 50 50 50 50 99 99 0 13 76-125 ## or in the properties 0.0 50 56 56 112 112 0 25 50-150 ## or in the properties 0.0 50 56 56 112 112 0 25 50-150 ## or in the properties 0.0 50 56 56 112 112 0 25 50-150 ## or in the properties 0.0 50 50 50 101 101 0 25 50-150 ## or in the properties 0.0 50 50 50 101 101 0 25 50-150 ## or in the properties 0.0 50 50 50 100 100 0 13 75-130 ## or in the properties 0.0 50 50 50 100 100 0 13 75-130 ## or in the properties 0.0 50 50 50 100 100 0 13 75-130 ## or in the properties 0.0 50 51 51 103 103 0 25 50-150 ## or in the properties 0.0 50 51 51 103 103 0 25 50-150 ## or in the properties 0.0 50 50 50 100 100 0 25 50-150 ## or in the properties 0.0 50 51 51 103 103 0 25 50-150 ## or in the properties 0.0 50 51 51 103 103 0 25 50-150 ## or in the properties 0.0 50 51 51 101 101 0 25 50-150 ## or in the properties 0.0 50 47 47 93 93 0 25 50-150 ## or in the properties 0.0 50 51 51 101 101 0 25 50-150 ## or in the properties 0.0 50 51 51 101 101 0 25 50-150 ## or in the properties 0.0 50 51 51 101 101 0 25 50-150 ## or in the properties 0.0 50 51 51 103 103 0 25 50-150 ## or in the properties 0.0 50 51 51 101 101 0 25 50-150 ## or in the properties 0.0 50 53 53 106 106 0 25 50-150 ## or in the properties 0.0 50 53 53 105 105 0 25 50-150 ## or in the properties 0.0 50 50 50 99	1,2-Dichloropropane	0.0	50	50					25	
Soluene						112	112			
.,1,2-Trichloroethan									25	
A3-Dichloropropane										
etrachloroethene	L, L, 2-1r1ch loroethan								25	
ibromochloromethane	etrachloropropane								25	
,2-Dibromoethane	ibromochloromethanel									
hlorobenzene	2-Dibromoethane									
thylbenzene	hlorobenzene								13	
1,1,1,2-Tetrachloroe 0.0 50 52 52 105 105 0 25 50-150 &p-xylene 0.0 100 95 95 95 95 0 25 50-150 -xylene 0.0 50 50 50 100 100 0 25 50-150 tyrene 0.0 50 51 51 103 103 0 25 50-150 sopropylbenzene 0.0 50 51 51 101 101 0 25 50-150 romoform 0.0 50 45 45 91 91 0 25 50-150 1,2,2-Tetrachloroe 0.0 50 47 47 93 93 0 25 50-150 1,2,3-Trichloropropa 0.0 50 50 50 101 101 0 25 50-150 -Propylbenzene 0.0 50 51 51 101 101 0 25 50-150 romobenzene 0.0 50 51										
&p-Xylene 0.0 100 95 95 95 95 0 25 50-150 -Xylene 0.0 50 50 50 100 100 0 25 50-150 tyrene 0.0 50 51 51 103 103 0 25 50-150 sopropylbenzene 0.0 50 51 51 101 101 0 25 50-150 romoform 0.0 50 45 45 91 91 0 25 50-150 1,2,2-Tetrachlorope 0.0 50 47 47 93 93 0 25 50-150 2,3-Trichloropropa 0.0 50 50 50 101 101 0 25 50-150 -Propylbenzene 0.0 50 51 51 101 101 0 25 50-150 -Propylbenzene 0.0 50 51 51 103 103 0	.,1,1,2-Tetrachloroe									
-Xylene	l&p-Xylene									
sopropylbenzene 0.0 50 51 51 101 101 0 25 50-150 romoform 0.0 50 45 45 91 91 0 25 50-150 ,1,2,2-Tetrachloroe 0.0 50 47 47 93 93 0 25 50-150 -Propylbenzene 0.0 50 50 50 101 101 0 25 50-150 romobenzene 0.0 50 51 51 101 101 0 25 50-150 romobenzene 0.0 50 49 49 97 97 0 25 50-150 romobenzene 0.0 50 51 51 103 103 0 25 50-150 3,3-5-Trimethylbenze 0.0 50 54 54 107 107 0 25 50-150 -Chlorotoluene 0.0 50 53 53 106 10	-Xylene			50	50					
romoform								0	25	50-150
,1,2,2-Tetrachloroe										
,2,3-Trichloropropa 0.0 50 50 101 101 0 25 50-150 -Propylbenzene 0.0 50 51 51 101 101 0 25 50-150 romobenzene 0.0 50 49 49 97 97 0 25 50-150 3,5-Trimethylbenze 0.0 50 51 51 103 103 0 25 50-150 -Chlorotoluene 0.0 50 54 54 107 107 0 25 50-150 -Chlorotoluene 0.0 50 53 53 106 106 0 25 50-150 -Chlorotoluene 0.0 50 53 53 106 106 0 25 50-150 -Chlorotoluene 0.0 50 53 53 106 106 0 25 50-150 -Chlorotoluene 0.0 50 50 99 99 0 25 50-150 -Chlorotoluene 0.0 50 53 53 105 105 0 25 50-150 -Chlorotoluene 0.0 50 53 53 105 105 0 25 50-150 -Chlorotoluene 0.0 50 50 99 99 0 25 50-150 -Chlorotoluene 0.0 50 50 99 99 0 25 50-150 -Chlorotoluene 0.0 50 46 46 92 92 0 25 50-150 -Chlorobenzene 0.0 50 46 46 92 92 0 25 50-150 -Chlorobenzene 0.0 50 49 49 99 99 0 25 50-150 -Chlorobenzene 0.0 50 51 51 101 101 0 25 50-150 -Chlorobenzene 0.0 50 51 51 102 102 0 25 50-150 -Chlorobenzene 0.0 50 51 51 102 102 0 25 50-150 -Chlorobenzene 0.0 50 51 51 102 102 0 25 50-150 -Chlorobenzene 0.0 50 53 53 105 105 0 25 50-150 -Chlorobenzene 0.0 50 53 53 105 105 0 25 50-150 -Chlorobenzene 0.0 50 53 53 105 105 0 25 50-150 -Chlorobenzene 0.0 50 53 53 105 105 0 25 50-150 -Chlorobenzene 0.0 50 53 53 105 105 0 25 50-150 -Chlorobenzene 0.0 50 51 51 102 102 0 25 50-150 -Chlorobenzene 0.0 50 53 53 105 105 0 25 50-150 -Chlorobenzene 0.0 50 50 50 50 50 50 5										
-Propylbenzene	2 3-Trichloropropa									
romobenzene	-Pronvihenzene								25	
,3,5-Trimethylbenze 0.0 50 51 51 103 103 0 25 50-150 -Chlorotoluene 0.0 50 54 54 107 107 0 25 50-150 -Chlorotoluene 0.0 50 53 53 106 106 0 25 50-150 -Chlorotoluene 0.0 50 53 53 106 106 0 25 50-150 -Chlorotoluene 0.0 50 53 53 106 106 0 25 50-150 -Chlorotoluene 0.0 50 50 99 99 0 25 50-150 -Chlorotoluene 0.0 50 50 50 99 99 0 25 50-150 -Chlorotoluene 0.0 50 50 50 99 99 0 25 50-150 -Chlorotoluene 0.0 50 50 50 99 99 0 25 50-150 -Chlorotoluene 0.0 50 50 50 99 99 0 25 50-150 -Chlorobenzene 0.0 50 46 46 92 92 0 25 50-150 -Chlorobenzene 0.0 50 49 49 99 99 0 25 50-150 -Chlorobenzene 0.0 50 51 51 101 101 0 25 50-150 -Chlorobenzene 0.0 50 51 51 102 102 0 25 50-150 -Chlorobenzene 0.0 50 53 53 105 105 0 25 50-150 -Chlorobenzene 0.0 50 53 53 105 105 0 25 50-150 -Chlorobenzene 0.0 50 53 53 105 105 0 25 50-150 -Chlorobenzene 0.0 50 53 53 105 105 0 25 50-150 -Chlorobenzene 0.0 50 53 53 105 105 0 25 50-150 -Chlorobenzene 0.0 50 53 53 105 105 0 25 50-150 -Chlorobenzene 0.0 50 53 53 105 105 0 25 50-150 -Chlorobenzene 0.0 50 53 53 105 105 0 25 50-150 -Chlorobenzene 0.0 50 53 53 105 105 0 25 50-150 -Chlorobenzene 0.0 50 53 53 105 105 0 25 50-150 -Chlorobenzene 0.0 50 53 53 105 105 0 25 50-150 -Chlorobenzene 0.0 50 50 50 50 50 50 5	romobenzene									
-Chlorotoluene	.3.5-Trimethylbenze							_ :		
-Chlorotoluene	-Chlorotoluene							- :	25	
ert-Butylbenzene 0.0 50 50 99 99 0 25 50-150 ,2,4-Trimethylbenze 0.0 50 53 53 105 105 0 25 50-150 ,3-Dichlorobenzene 0.0 50 50 50 99 99 0 25 50-150 ,4-Dichlorobenzene 0.0 50 46 46 92 92 0 25 50-150 ec-Butylbenzene 0.0 50 60 60 121 121 0 25 50-150 ec-Butylbenzene 0.0 50 49 49 99 99 0 25 50-150 ec-Butylbenzene 0.0 50 49 49 99 99 0 25 50-150 ec-Butylbenzene 0.0 50 51 51 101 101 0 25 50-150 2-Dichlorobenzene 0.0 50 51 51 102 102 0 25 50-150 2-Dibromo-3-chloro 0.0 50 53 53 105 105 0 25 50-150 ephthalene 2.7 50 47 47 89 89 0 25	-Chlorotoluene							,		
,2,4-Trimethylbenze 0.0 50 53 53 105 105 0 25 50-150 ,3-Dichlorobenzene 0.0 50 50 50 99 99 0 25 50-150 ,4-Dichlorobenzene 0.0 50 46 46 92 92 0 25 50-150 ec-Butylbenzene 0.0 50 60 60 121 121 0 25 50-150 -	ert-Butylbenzene									
3-Dichlorobenzene	,2,4-Trimethylbenze	0.0	50	53	53			0		
-C-Butylbenzene 0.0 50 60 60 121 121 0 25 50-150 150	,3-Dichlorobenzene						99	0 j	25	
-Isopropyltoluene 0.0 50 49 49 99 99 0 25 50-150 -Butylbenzene 0.0 50 51 51 101 101 0 25 50-150 -2-Dichlorobenzene 0.0 50 51 51 102 102 0 25 50-150 -2-Dibromo-3-chloro 0.0 50 53 53 105 105 0 25 50-150 -3-Dibromo-3-chloro 0.0 50 53 53 105 105 0 25 50-150 -3-Dibromo-3-chloro 0.0 50 53 53 105 105 0 25 50-150 -3-Dibromo-3-chloro 0.0 50 53 50-150	,4-Dichlorobenzene							0		50-150
-Butylbenzene 0.0 50 51 51 101 101 0 25 50-150 22-Dichlorobenzene 0.0 50 51 51 102 102 0 25 50-150 22-Dibromo-3-chloro 0.0 50 53 53 105 105 0 25 50-150 32-Dibromo-3-chloro 2.7 50 47 47 89 89 0 25 50-150 32-Dibromo-3-chloro 2.7 50 47 47 89 89 0 25 50-150 32-Dibromo-3-chloro 2.7 50 47 47 89 89 0 25 50-150 32-Dibromo-3-chloro 32-Dibromo-3-ch	-Tsonnonvii									
,2-Dichlorobenzene 0.0 50 51 51 102 102 0 25 50-150 22-Dibromo-3-chloro 0.0 50 53 53 105 105 0 25 50-150 3phthalene 2.7 50 47 47 89 89 0 25 50-150	-Butylbonzo-							_ :		
2-Dibromo-3-chloro 0.0 50 53 53 105 105 0 25 50-150 aphthalene 2.7 50 47 47 89 89 0 25 50-150	2-Dichlorohoman	- :								
aphthalene 2.7 50 47 47 89 89 0 25 50-150	.2-Dibromo-3-chlosel									
	aphthalene							_ :		
2 4 This chi and the control of the c	exachlorobutadiana									
	2 4 Taightanhan				70	24	94	Ü	45	20-T201

EPA SAMPLE NO.

VBLK062001

Lab Name:	STAT Analysis		Contract:	
Lab Code:		Case No.: 702045	SAS No.: SI	DG No.:
Lab File ID:	06200103.D		Lab Sample ID:	VBLK062001
Date Analyze	ed: 06/20/01		Time Analyzed:	08:23
GC Column:		0.25 (mm)	Heated Purge: (Y/N) <u>Y</u>
Instrument ID): VOC-3			

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	EPA	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	VLCS062001	VLCS062001	06200104.D	09:00
02	RPM-SB074-001	918691 B&M 702045	06200105.D	09:38
03	RPM-SB074-001MS	918691MS B&M 702045	06200106.D	10:14
04	RPM-SB074-001MS	918691MSD B&M 702045	06200107.D	10:51
05	RPM-SB072-001	918692 B&M 702045	06200108.D	11:35
06	RPM-SB073-001	918693 B&M 702045	06200109.D	12:12
07	RPM-SB075-001	918694 B&M 702045	06200110.D	12:48
08	RPM-SB077-001	918695 B&M 702045	06200111.D	13:26
09	RPM-SB077-002	918696 B&M 702045	06200112.D	14:02
10	RPM-SB076-001	918697 B&M 702045	06200113.D	14:40
11	RPM-SB076-002	918698 B&M 702045	06200114.D	15:16
12	RPM-SB078-001	918699 B&M 702045	06200115.D	15:53
13	RPM-SB076-002	918700 B&M 702045	06200116.D	16:31
14	RPM-SB079-001	918701 B&M 702045	06200117.D	17:07
15	RPM-SB079-002	918702 B&M 702045	06200118.D	17:44
16	RPM-SB080-001	918703 B&M 702045	06200119.D	18:23

Spike Recovery and RPD Summary Report - SOIL

Method : H:\MSDCHEM\1\DATA\062001\5035.M (Chemstation Integrator)
Title : Method 8260
Last Update : Wed Jun 20 08:14:15 2001
Response via : Initial Calibration

Non-Spiked Sample: 06200103.D

Spike Spike

Duplicate Sample Sample

File ID: 06200104.D Sample: VLCS062001 Acq Time: 20 Jun 2001 9:00 am 06200104.D VLCS062001

20 Jun 2001 9:00 am

Acq 77mc. 20 July 20									
Compound	sample Conc	Spike Added	Spike Res	Dup Res	Spike %Rec	Dup %Rec	RPD	QC. RPD	Limits % Rec
Dichlorodifluorometh Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethane 2,2-Dichloroethane 2,2-Dichloroethane 2,2-Dichloromethane 2,2-Dichloromethane 2,1,1-Trichloromethane 1,1,1-Trichloromethane 1,1,1-Trichloromethane 1,2-Dichloromethane 1,2-Dichloromethane Benzene Trichloroethane Bromodichloromethane cis-1,3-Dichloropropane Bromodichloromethane cis-1,3-Dichloropropane Tetrachloroethan 1,3-Dichloropropane Tetrachloroethane Dibromomethane Chlorobenzene Ethylbenzene 1,1,1,2-Tetrachloroethane Chlorobenzene Ethylbenzene 1,1,1,2-Tetrachloroem&p-Xylene o-Xylene Styrene Isopropylbenzene Bromoform 1,1,2,2-Tetrachloroem 1,2,3-Trichloropropan-Propylbenzene Bromomomethane Chlorotoluene 4-Chlorotoluene 4-C	0.0700000000000000000000000000000000000	500 500 500 500 500 500 500 500 500 500	42 437 46 423 417 365 478 489 369 478 478 479 430 423 442 439 442 439 443 443 443 443 443 443 443 443 443	42376024176578489692789041235013444444444444334444333334334333434344444	886410# 889710# 886410# 886410# 886410# 886410# 88774946769383368868888888888888888888888888888	886410# 889710# 886410# 88771987777887778888888888888888888889888877888877888778887788887788887888888	0 0 0 0	25 25 25 25 25 25 25 25 25 25 25 25 25 2	50-150 50-150

EPA SAMPLE NO.

VBLK062001

Lab Name:	STAT Analys	sis	Contract:		
Lab Code:	702051	Case No.:	SAS No.:	SDG No.:	 .
_ab File ID:	06200103	3.D	Lab Samp	ole ID: VBLK062001	
Date Analyze	ed: 06/20/01	·	Time Ana	lyzed: 08:23	
GC Column:	RTX502.	D: <u>0.25</u> (mm)	Heated F	turge: (Y/N) Y	
netrument II) VOC-1				

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

EPA	LAB	LAB	TIME
SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
VLCS062001	VLCS062001	06200104.D	08:54
RPM-SB070-001	918744 B&M 702051	06200113.D	14:05
RPM-SB071-001	918745 B&M 702051	06200114.D	14:40
RPM-SB083-001	918746 B&M 702051	06200115.D	15:15
RPM-SB083-002	918747 B&M 702051	06200116.D	15:50
	SAMPLE NO. VLCS062001 RPM-SB070-001 RPM-SB071-001 RPM-SB083-001	SAMPLE NO. SAMPLE ID VLCS062001 VLCS062001 RPM-SB070-001 918744 B&M 702051 RPM-SB071-001 918745 B&M 702051 RPM-SB083-001 918746 B&M 702051	SAMPLE NO. SAMPLE ID FILE ID VLCS062001 VLCS062001 06200104.D RPM-SB070-001 918744 B&M 702051 06200113.D RPM-SB071-001 918745 B&M 702051 06200114.D RPM-SB083-001 918746 B&M 702051 06200115.D

EPA SAMPLE NO.

VBLK062001

Lab Name:	STAT Analysis		Contract:	
Lab Code:	017(17)11419	Case No.: 702045	SAS No.: SE	OG No.:
Lab File ID:	06200103.D		Lab Sample ID:	VBLK062001
Date Analyze	d: 06/20/01		Time Analyzed:	08:23
GC Column:	DB-VRX ID:	0.25 (mm)	Heated Purge: ((/N) Y
Instrument ID): VOC-3			

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	EPA	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	VLCS062001	VLCS062001	06200104.D	09:00
02	RPM-SB074-001	918691 B&M 702045	06200105.D	09:38
03	RPM-SB074-001MS	918691MS B&M 702045	06200106.D	10:14
04	RPM-SB074-001MS	918691MSD B&M 702045	06200107.D	10:51
05	RPM-SB072-001	918692 B&M 702045	06200108.D	11:35
06	RPM-SB073-001	918693 B&M 702045	06200109.D	12:12
07	RPM-SB075-001	918694 B&M 702045	06200110.D	12:48
08	RPM-SB077-001	918695 B&M 702045	06200111.D	13:26
09	RPM-SB077-002	918696 B&M 702045	06200112.D	14:02
10	RPM-SB076-001	918697 B&M 702045	06200113.D	14:40
11	RPM-SB076-002	918698 B&M 702045	06200114.D	15:16
12	RPM-SB078-001	918699 B&M 702045	06200115.D	15:53
13	RPM-SB076-002	918700 B&M 702045	06200116.D	16:31
14	RPM-SB079-001	918701 B&M 702045	06200117.D	17:07
15	RPM-SB079-002	918702 B&M 702045	06200118.D	17:44
16	RPM-SB080-001	918703 B&M 702045	06200119.D	18:23

Spike Recovery and RPD Summary Report - SOIL

Method : H:\MSDCHEM\1\DATA\062001\5035.M (Chemstation Integrator)
Title : Method 8260
Last Update : Wed Jun 20 08:14:15 2001
Response via : Initial Calibration

Non-Spiked Sample: 06200103.D

Spike	Spike
Sample	Duplicate Sample

06200104.D File_ID : 06200104.D VLCS062001

20 Jun 2001 9:00 am

Sample : VLCS062001 Acq Time: 20 Jun 2001 9:00 am

Compound	Sample Conc	Spike Added	Spike Res	Dup Res	Spike %Rec	Dup %Rec	RPD	QC RPD	Limits % Rec
Dichlorodifluorometh Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene Methylene chloride trans-1,2-Dichloroethane 2,2-Dichloropropane cis-1,2-Dichloroethane 2,2-Dichloromethane 1,1-Trichloroethane 1,1-Trichloroethane 1,1-Dichloropropane Carbon tetrachloride 1,2-Dichloropropane Bromochloromethane Cis-1,3-Dichloropropane Bromodichloromethane cis-1,3-Dichloropropane Trichloroethane Dibromomethane cis-1,3-Dichloropropane Tetrachloroethene Dibromochloromethane Cis-1,3-Dichloropropane Tetrachloroethene Dibromochloromethane 1,2-Dibromoethane Chlorobenzene Ethylbenzene 1,1,1,2-Tetrachloroe m&p-xylene o-xylene styrene Isopropylbenzene Bromoform 1,1,2,2-Tetrachloroe m&p-xylene o-xylene styrene Isopropylbenzene Bromobenzene 1,3,5-Trimethylbenzene 1,3,5-Trimethylbenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dibromo-3-chloro	0.07.00.00.00.00.00.00.00.00.00.00.00.00	500 500 500 500 500 500 500 500 500 500	42 43 47 36 41 36 41 37 41 37 41 37 41 37 41 37 41 41 41 41 41 41 41 41 41 41 41 41 41		84 84 84 86 87 81 81 81 81 81 81 81 81 81 81 81 81 81	84 84 84 84 84 84 81 81 81 81 81 81 81 81 81 81 81 81 81	000000000000000000000000000000000000000	25 25 25 25 25 25 25 25 25 25 25 25 25 2	50-150 5

1,2,4-Trichlorobenze 1,2,3-Trichlorobenze	3.5 0.0	50 50	33 75	33 75	60 149	60 149	0	25 25	50-150 50-150
---	-----------	------------	------------	------------	-------------	-------------	---	------------	------------------

- Fails Limit Check

5035.M

Thu Jun 21 10:21:30 2001

MSDA

Spike Recovery and RPD Summary Report - SOIL

: H:\MSDCHEM\1\DATA\051501\5035.M (Chemstation Integrator) Method

Title : Method 8260

Last Update : Wed May 09 15:45:24 2001 Response via : Initial Calibration

Non-Spiked Sample: 05150103.D

Spike	Spike
JUING	56.110

Duplicate Sample Sample

File ID: 05150104.D Sample: VLCS051501 Acq Time: 15 May 2001 5:36 pm | 05150104.D | VLCS051501

| 15 May 2001 5:36 pm

Acq Time: 15 May 20									
Compound	Sample Conc	Spike Added	Spike Res	Dup Res	spike %Rec	Dup %Rec	RPD	QC RPD	Limits % Rec
Dichlorodifluorometh Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene Methylene chloride trans-1,2-Dichloroethane 2,2-Dichloropropane cis-1,2-Dichloroethane Chloroform Bromochloromethane 1,1-Trichloroethane 1,2-Dichloropropane Carbon tetrachloride 1,2-Dichloropropane Bromodichloromethane Trichloroethene 1,2-Dichloropropane Bromodichloromethane Toluene 1,1,2-Trichloroethane Tetrachloroethene Dibromomethane Toluene 1,1,2-Trichloroethane Chlorobenzene Ethylbenzene 1,1,1,2-Tetrachloroe m&p-Xylene 0-Xylene Styrene Isopropylbenzene Bromoform 1,1,2,2-Tetrachloroe 1,2,3-Trichloropropa n-Propylbenzene Bromobenzene 1,3,5-Trimethylbenze 2-Chlorotoluene 4-Chlorotoluene 4-Chlorotoluene 4-Chlorotoluene 4-Chlorotoluene 5-Chlorotoluene 1,2,4-Trimethylbenze 2-Chlorotoluene 4-Chlorotoluene 4-Chlorotoluene 4-Chlorotoluene 1,2,4-Trimethylbenze 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,2-Dichlorobenzene	0.044000000000000000000000000000000000	50000000000000000000000000000000000000	3682604472767747616494580899997020449194828999789556495250 3826044727677476164945808999702044910049482899789556495250	38260472767747616494580899970204910019482899789556495259 38260472767747616494580899970204910019482899789556495259	72 75 64 87 107 44 44 11 57 69 71 67 71 68 71 71 71 71 71 71 71 71 71 71 71 71 71	7254# 72548# 17648775767787787849307930024775359877677531398 7777777788887787877777788877777778877777	000000000000000000000000000000000000000	25555555555555555555555555555555555555	50-150 5

EPA SAMPLE NO.

VBLK062001A

Lab Name:	STAT Analysis		Contract:	12110020000
Lab Code:		Case No.: 702045	SAS No : SD	G No.:
Lab File ID:	06200103.D		Lab Sample ID:	VBLK062001a
Date Analyze	ed: 06/20/01		Time Analyzed: 2	20:21
GC Column:	DB-VRX ID:	0.25 (mm)	Heated Purge: (Y	//N) <u>Y</u>
Instrument ID): VOC-3			

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	EPA	LAB	LAB	TIME
	SAMPLE NO	SAMPLE ID	FILE ID	ANALYZED
01	VLCS062001A	VLCS062001A	06200104.D	20:59
02	RPM-SB081-001	918704 B&M 702045	06200105.D	21:36
03	RPM-SB081-002	918705 B&M 702045	06200106.D	22:12
04	RPM-SB082-001	918706 B&M 702045	06200107.D	22:49

EPA SAMPLE NO.

_ab Name:	STAT Analysis		Contract:	VBLK06.	2101A
_ab Code:	702051	Case No.:	SAS No.:	SDG No.:	
_ab File ID:	06210103.)	Lab Sample	ID: <u>VBLK062101</u>	1A
Date Analyze	ed: 06/21/01		Time Analyz	ed: <u>21:43</u>	·
GC Column:	RTX502. ID.	0.25 (mm)	Heated Pur	ge: (Y/N) <u>Y</u>	
nstrument IE	DI VOC-1				

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	EPA	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	VLCS062101A	VLCS062101A	06210104.D	22:18
02	RPM-SB083-002D	918747 B&M 702052 1:84	06210105.D	22:53

EPA SAMPLE NO.

VBLK062001A

Lab Name:	STAT Analysis		Contract:	VDEROOZOOTA
Lab Code:		Case No.: 702045	SAS No.: SD	G.No.:
Lab File ID:	06200103.D)	Lab Sample ID: \	/BLK062001a
Date Analyze	ed: 06/20/01		Time Analyzed: 2	20:21
GC Column:	DB-VRX ID:	0.25 (mm)	Heated Purge: (Y	//N) <u>Y</u>
Instrument II	D: <u>VOC-3</u>			

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	EPA	LAB	LAB	TIME		
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED		
01 02 03	VLCS062001A	VLCS062001A	06200104.D	20:59		
	RPM-SB081-001	918704 B&M 702045	06200105.D	21:36		
	RPM-SB081-002	918705 B&M 702045	06200106.D	22:12		
04	RPM-SB082-001	918706 B&M 702045	06200107.D	22:49		

Spike Recovery and RPD Summary Report - SOIL

Method : H:\MSDCHEM\1\DATA\062001A\5035.M (Chemstation Integrator)
Title : Method 8260
Last Update : Wed Jun 20 08:14:15 2001
Response via : Initial Calibration

Non-Spiked Sample: 06200103.D

spike Spike

Duplicate Sample Sample

06200104 D File ID: 06200104.D

VLCS062001a 20 Jun 2001 Sample : VLCS062001a Acq Time: 20 Jun 2001 8:59 pm 8:59 pm

Acq Time. 20 Juli 20		. J.J. piii							
Compound	Sample Conc	Spike Added	Spike Res	Dup Res	Spike %Rec	Dup %Rec	RPD	QC RPD	Limits % Rec
Dichlorodifluorometh Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethat 1,1-Dichloroethene Methylene chloride trans-1,2-Dichloroethane 2,2-Dichloropropane cis-1,2-Dichloropropane cis-1,2-Dichloropropane cis-1,2-Dichloropropene Carbon tetrachloride 1,2-Dichloropropene Carbon tetrachloride 1,2-Dichloropropane Bromodichloromethane 1,2-Dichloropropane Bromodichloromethane cis-1,3-Dichloropropane Bromodichloromethane cis-1,3-Dichloropropane Trichloroethene Dibromomethane cis-1,3-Dichloropropane Tetrachloroethene Dibromochloromethane 1,2-Dibromoethane 1,2-Dibromoethane 1,1,2-Tetrachloroe m&p-Xylene chlorobenzene Ethylbenzene 1,1,1,2-Tetrachloroe m&p-Xylene oxylene styrene Isopropylbenzene Bromobenzene Ethylbenzene 1,3,5-Trimethylbenzene 1,3,5-Trimethylbenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dibromo-3-chloro	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Added	Res 49 49 49 40 41 41 41 41 41 41 41 41 41 41 41 41 41	Re 499428413711012134023686880459646989762318275431376272	98 98 108 108 	98 98 108 108 	000000000000000000000000000000000000000	25 25 25 25 25 25 25 25	50-150 5
· · · ·		-^ '		300	400 H j	1001	^ 1	כר ו	EV 1EVI

1,2,4-Trichlorobenze 1,2,3-Trichlorobenze	3.5	50 50	33 75	33 75	60 149	60 149	0	25 25	50-150 50-150
1.2.3-Trichlorobenze	0.0	50	75	75	149	149	U	25	50-

- Fails Limit Check

5035.M

Thu Jun 21 10:21:30 2001

MSDA

EPA SAMPLE NO.

VBLK062101A

_ab Name:	STAT Analysis	Contract:	
_ab Code:	702031 Case No.	SAS No.: SDC	€ No.:
_ab File ID:	06210103.D	Lab Sample ID: V	BLK062101A
Date Analyze	ed: 06/21/01	Time Analyzed 2	1:43
GC Column:		Heated Purge: (Y/	N) <u>Y</u>
nstrument IC	D: VOC-1		

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	TIME ANALYZED	
01	VLCS062101A	VLCS062101A	06210104.D	22:18	
02	RPM-SB083-002D	918747 B&M 702052 1:84	06210105.D	22:53	

Spike Recovery and RPD Summary Report - SOIL

Method : H:\MSDCHEM\1\DATA\062001A\5035.M (Chemstation Integrator)
Title : Method 8260
Last Update : Wed Jun 20 08:14:15 2001
Response via : Initial Calibration

Non-Spiked Sample: 06200103.D

Spike Spike

Duplicate Sample Sample

File ID: 06200104.D | 06200104.D | Sample: VLCS062001a | VLCS062001a | Acq Time: 20 Jun 2001 8:59 pm | 20 Jun 2001 8:59 pm

Compound	Sample Conc	Spike Added	Spike Res	Dup Res	Spike %Rec	Dup %Rec	RPD	QC RPD	Limits % Rec
Dichlorodifluorometh Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluorometha 1,1-Dichloroethene	0.0 0.0 1.6 0.0 0.0	50 50 50 50 50 50 50	49 49 54 62 48 74 51	49 49 54 62 48 74 51	98 98 108 121 96 148 101	98 98 108 121 96 148 101	0 0 0	25 25 25 25 25 25 25	50-150 50-150 50-150 50-150 50-150 50-150 50-151
Methylene chloride trans-1,2-Dichloroet 1,1-Dichloroethane 2,2-Dichloropropane cis-1,2-Dichloroethe Chloroform Bromochloromethane	0.0	50 50 50 50 50 50	54 41 43 47 51 41 50 41	54 41 43 47 51 41 50 41	108 83 85 93 101 82 100 81	108 83 85 93 101 82 100 81	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	25 25 25 25 25 25 25 25	50-150 50-150 50-172 50-150 50-150 50-150 50-150
1,1,1-Trichloroethan 1,1-Dichloropropene Carbon tetrachloride 1,2-Dichloroethane Benzene Trichloroethene 1,2-Dichloropropane Bromodichloromethane	0.0 0.0 0.0 0.0 0.0	50 50 50 50 50 50 50 50	41 41 43 44 40 42 43	42 41 43 44 40 42 43	85 83 85 89 80 84 85	85 83 85 89 80 84 85	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	25 25 25 25 25 25 25 25 25	50-150 50-150 50-150 50-151 71-157 50-150 50-150
Dibromomethane cis-1,3-Dichloroprop Toluene trans-1,3-Dichloropr 1,1,2-Trichloroethan 1,3-Dichloropropane Tetrachloroethene	0.0	50 50 50 50 50 50 50	46 38 46 38 48 50 44	46 38 46 38 48 50 44	92 76 93 76 96 97 88	92 76 93 76 96 97 88	0 0 0 0 0 0 0 0 0 0	25 25 25 25 25 25 25 25	50-150 50-150 50-150 50-150 50-150 50-150 50-150
Dibromochloromethane 1,2-Dibromoethane Chlorobenzene Ethylbenzene 1,1,1,2-Tetrachloroe m&p-Xylene	0.0 0.0 0.0 0.0 0.0	50 50 50 50 50 100	45 49 46 44 46 89 48	45 49 46 44 46 89 48	91 99 92 87 93 89 95	91 99 92 87 93 89 95	0 0 0 0 0	25 25 25 25 25 25 25 25	50-150 50-150 50-160 50-150 50-150 50-150 50-150
o-Xylene Styrene Isopropylbenzene Bromoform 1,1,2,2-Tetrachloroe 1,2,3-Trichloropropa n-Propylbenzene Bromobenzene	0.0 0.0 0.0 0.0 0.0	50 50 50 50 50 50	49 47 46 52 53 51 48	49 47 46 52 53 51 48	97 94 93 103 106 102 97	97 94 93 103 106 102 97	000000	25 25 25 25 25 25 25 25	50-150 50-150 50-150 50-150 50-150 50-150 50-150
1,3,5-Trimethylbenze 2-Chlorotoluene 4-Chlorotoluene tert-Butylbenzene 1,2,4-Trimethylbenze 1,3-Dichlorobenzene		50 50 50 50 50 50	52 47 45 54 53 51 43	52 47 45 54 53 51 43	103 93 91 108 106 102 86	103 93 91 108 106 102 86	000000	25 25 25 25 25 25 25 25	50-150 50-150 50-150 50-150 50-150 50-150 50-150
1,4-Dichlorobenzene sec-Butylbenzene p-Isopropyltoluene n-Butylbenzene 1,2-Dichlorobenzene 1,2-Dibromo-3-chloro	0.0 0.0 0.0 0.0 0.0	50 50 50 50	57 46 42 47 42	57 46 42 47 42 42	115 92 83 94 49#	115 92 83 94 49#	0 0 0 0	25 25 25 25 25 25	50-150 50-150 50-150 50-150 50-150

1,2,4-Trichlorobenze	5.4 0.0	50 88	88	165# 165#	0 25	50-150
1,2,3-Trichlorobenze		50 121	121	242# 242#	0 25	50-150
1,2,4-Trichlorobenze 1,2,3-Trichlorobenze	5.4 0.0	50 88	88	165# 165# 242# 242#	0 25	50-

- Fails Limit Check

5035.M

Thu Jun 21 10:22:21 2001 MSDA

EPA SAMPLE NO

SBLKSOI

Lab Name: STAT Analysis

Lab Code:

Case No.:

GC/MS-SVOC-2

Contract: Burns&McDonnel

SAS No.:

SDG No.: Lab Sample ID: PNA BLANK

Lab File ID:

05080109.D

Date Extracted:

05/08/01

Instrument ID:

Matrix: (soil/water) SOIL

Date Analyzed:

05/08/01

Level: (low/med)

LOW

Time Analyzed:

17:10

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	EPA	LAB	LAB	DATE
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	PNA SOIL LCS	PNASLCS050801	05080110.D	05/08/01
	05/08/01			
02	RPM-SB44-001	917110	05080111.D	05/08/01
03	RPM-SB44-002	917111	05080113.D	05/08/01
04	RPM-SB43-001	917112	05080114.D	05/08/01
05	RPM-SB42-001	917113	05080115.D	05/08/01
06	RPM-SB42-002	917114	05080117.D	05/08/01
07	RPM-SB51-001	917115	05080118.D	05/08/01
08	RPM-SB51-002	917116	05080119.D	05/08/01
09	RPM-SB52-001	917117	05080124.D	05/08/01
10	RPM-SB52-002	917118	05080125.D	05/08/01
11	RPM-SB59-001	917119	05090109.D	05/09/01
12	RPM-SB59-001-D1	917119-D1	05080126.D	05/08/01
13	RPM-SB59-002	917120	05080127.D	05/08/01
14	RPM-SB58-001	917121	05080128.D	05/08/01
15	RPM-SB58-002	917122	05080129.D	05/08/01
16	RPM-SB53-001	917123	05080130.D	05/08/01
17	RPM-SB53-002	917124	05080131.D	05/08/01
18				
19				
20		•		
21				
22				
23				
24				
25			A	
26				

COMMENTS				
	 	**		

EPA SAMPLE NO.

SBLKSOI

Lab Name: STAT Analysis

Contract: Burns&McDonnel

SDG No.:

Lab Code: Lab File ID:

05110104.D

SAS No.:

Lab Sample ID: PNA BLANK

Instrument ID:

GC/MS-SVOC-2

Case No.:

Date Extracted:

05/09/01

Matrix: (soil/water) SOIL

Date Analyzed:

05/11/01

Level: (low/med)

LOW

Time Analyzed:

17:24

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	EPA LAB		LAB	DATE
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	PNA Soil LCS 2 05/09/01	PNA SOIL LCS 050101	05110105.D	05/11/01
02	RPM-SB55-003	917178	05090119.D	05/09/01
03	RPM-SB56-001	917179	05090120.D	05/09/01
04	RPM-SB56-002	917180	05090137.D	05/09/01
05	RPM-SB56-003	917181	05090138.D	05/09/01
06	RPM-SB56-004	917182	05090139.D	05/09/01
07	RPM-SB56-005	917183	05100144.D	05/11/01
08	RPM-SB57-001	917184	05090128.D	05/09/01
09	RPM-SB57-001-D1	917184 D1	05090129.D	05/09/01
10	RPM-SB57-001-D2	917184 D2	05090130.D	05/09/01
11	RPM-SB57-002	917185	05090136.D	05/09/01
12	RPM-SB54-001	917186	05090131.D	05/09/01
13	RPM-SB54-002	917187	05090132.D	05/09/01
14	RPM-SB54-003	917188	05100143.D	05/10/01
15	RPM-SB39-001	917189	05100142.D	05/10/01
16	RPM-SB39-002	917190	05090140.D	05/09/01
17	RPM-SB39-003	917191	05090141.D	05/09/01
18	917241	917241	05100113.D	05/10/01
19	917241MS	917241 MS	05100116.D	05/10/01
20	917241MSD	917241 MSD	05100117.D	05/10/01
21				
22				
23				
24				
25				
26				

COMMENTS:	

EPA SAMPLE NO.

SBLKSOI

Lab Name: STAT Analysis

Contract: Burns&McDonnell

Lab Code: SAS No.:

Case No.: SDG No.:

Lab File ID:

06150107.D

Lab Sample ID: PNA BLANK

Instrument ID:

GC/MS-SVOC-3

Date Extracted:

06/15/01

Matrix: (soil/water)

SOIL

Date Analyzed:

06/15/01

Time Analyzed:

13:52

Level: (low/med) LOW

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

EPA LAB LAB DATE SAMPLE NO. SAMPLE ID FILE ID ANALYZED 01 PNA SOIL LCS 06/15/01 PNASLCS061501 06150108.D 06/15/01 02 RPM-SB074-001 918691 06170103.D 06/17/01 03 RPM-SB072-001

918692 06180110.D 06/18/01 RPM-SB073-001 04 918693 06170105.D 06/17/01 05 918686 918686 06160111.D 06/16/01 06 918686MS 918686MS 06160112.D 06/16/01

07 918686MSD 918686MSD 06160113.D 06/16/01 08

COMMENTS:	

EPA SAMPLE NO.

SBLKSOI

Lab Name: STAT Analysis

Contract: Burns&McDonnell

Lab Code:

Case No.:

SAS No.:

SDG No.:

Lab File ID:

06170106.D

Instrument ID:

GC/MS-SVOC-3

Date Extracted:

06/15/01

Matrix: (soil/water)

SOIL

Date Analyzed:

06/17/01

Level: (low/med)

LOW

Time Analyzed:

<u>13:47</u>

Lab Sample ID: PNA BLANK

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	EPA	LAB	LAB	DATE
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	PNA SOIL LCS-2 06/15/01	PNASLCS-2 061501	06170107.D	06/17/01
02	RPM-SB075-001	918694	06170108.D	06/17/01
03	RPM-SB077-001	918695	06180109.D	06/17/01
04	RPM-SB077-002	9187696	06170110.D	06/17/01
05	RPM-SB076-001	918697	06170111.D	06/17/01
06	RPM-SB076-002	918698	06170112.D	06/17/01
07	RPM-SB078-001	918699	06170113.D	06/17/01
08	RPM-SB078-002	918700	06170114.D	06/17/01
09	RPM-SB079-001	918701	06170115.D	06/17/01
10	RPM-SB079-002	918702	06170116.D	06/17/01
11	RPM-SB080-001	918703	06170117.D	06/17/01
12	RPM-SB080-001D	918703D	06180121.D	06/18/01
13	RPM-SB081-001	918704	06170118.D	06/17/01
14	RPM-SB081-001D	918704D	06180120.D	06/18/01
15	RPM-SB081-002	917805	06170119.D	06/17/01
16	RPM-SB082-001	918706	06170120.D	06/17/01
17	RPM-SB082-001MS	918706MS	06170121.D	06/17/01
18	RPM-SB082-001MSD	918706MSD	06170122.D	06/17/01

COMMENTS:		

4B

SEMIVOLATILE METHOD BLANK SUMMARY

$\Box \Box \Delta$	SAMPL	F	NO
	SHIVIE		INO.

SBLNK 061801

Lab Name:	STAT An	alysis	Contract:	Burns & McDonnell	3BENIX 001001
Lab Code:	702051	Case No.:		SAS No.: SD	G No.:
Lab File ID:	06180	103.D		Lab Sample ID:	SBLNK 061801
Instrument IE	D: SVOC	:-3		Date Extracted:	5/8/2001
Matrix: (soil/	water)	SOIL		Date Analyzed:	6/18/2001
Level: (low/r	ned) <u>l</u>	_OW		Time Analyzed:	13:02

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	EPA	LAB	LAB	DATE
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	SLCS 061801	SLCS 061801	06180104.D	6/18/2001
02	RPM-SB070-001	918744	06180116.D	6/18/2001
03	RPM-SB071-001	918745	06180117.D	6/18/2001
04	RPM-SB083-001	918746	06180118.D	6/18/2001

COMMENTS:

Lab Name: STAT Analysis Corporation		Contract:	Burns&McDonnel			
Lab Code:	701824	Case No.:	_ SAS No:		SDG No :	
Matrix Spike - Sar	mple ID:	SBLNK 050801				

Compound	SPIKE ADDED (ug/Kg)	SAMPLE CONCENTRATION (ug/Kg)	MS CONCENTRATION (ug/Kg)	MS % REC #	QC LIMITS REC
Napthalene	167	0	64	38	30-140
Acenaphthylene	167	0	74	44	30-140
Acenaphthene	167	0	72	43	31-137
Fluorene	167	0	70	42	30-140
Phenanthrene	167	0	75	45	30-140
Anthracene	167	0	80	48	30-140
Fluoranthene	167	0	81	48	30-140
Pyrene	167	0	79	48	35-142
Benzo(a)anthracene	167	0	82	49	30-140
Chrysene	167	0	108	64	30-140
Benzo(b)fluoranthene	167	0	100	60	30-140
Benzo(k)fluoranthene	167	0	83	50	30-140
Benzo(a)pyrene	167	0	79	47	30-140
Ideno(1,2,3-cd)pyrene	167	0	92	55	30-140
Dibenz(a,h)anthrancene	167	0	138	83	30-140
Benzo(g,h,i) perylene	167	0	87	52	30-140

Lab Name:	STAT Analysis Co	orporation	Contract:	Burns&McDor	<u>nnel</u>	
Lab Code:	701830	Case No.:	_ SAS No :		SDG No :	
Matrix Spike - Sar	mple ID:	SBLNK 050901	_			

Compound	SPIKE ADDED (ug/Kg)	SAMPLE CONCENTRATION (ug/Kg)	MS CONCENTRATION (ug/Kg)	MS % REC #	QC LIMITS REC
Napthalene	167	0	62	37	30-140
Acenaphthylene	167	0	71	43	30-140
Acenaphthene	167	0	68	41	31-137
Fluorene	167	0	73	44	30-140
Phenanthrene	167	0	74	45	30-140
Anthracene	167	0	81	48	30-140
Fluoranthene	167	0	84	50	30-140
Pyrene	.167	0	84	50	35-142
Benzo(a)anthracene	167	0	83	50	30-140
Chrysene	167	0	110	66	30-140
Benzo(b)fluoranthene	167	0	103	62	30-140
Benzo(k)fluoranthene	167	0	85	51	30-140
Benzo(a)pyrene	167	0	83	50	30-140
Ideno(1,2,3-cd)pyrene	167	0	105	63	30-140
Dibenz(a,h)anthrancene	167	0	156	93	30-140
Benzo(g,h,i) perylene	167	0	100	60	30-140

Column to be used to flag recovery with an
--

COMMENTS:	

^{*} Values outside of QC limits Spike Recovery: 0 out of 16 outside limits

Lab Name:	STAT Analysis	Corporation	Contract: <u>Burns&</u>	McDonnel	
Lab Code:	701830	Case No.:	SAS No.:	SDG No.:	
Matrix Spike -	Sample ID:	SBLNK-2 050901			

Compound	SPIKE ADDED (ug/Kg)	SAMPLE CONCENTRATION (ug/Kg)	MS CONCENTRATION (ug/Kg)	MS % REC #	QC LIMITS REC
Napthalene	167	0	53	32	30-140
Acenaphthylene	167	0	58	35	30-140
Acenaphthene	167	0	63	38	31-137 ⁻
Fluorene	167	0	68	41	30-140
Phenanthrene	167	0	73	43	30-140
Anthracene	167	.0	79	47	30-140
Fluoranthene	167	0	86	51	30-140
Pyrene	167	0	88	53	35-142
Benzo(a)anthracene	167	0	75	45	30-140
Chrysene	167	0	101	60	30-140
Benzo(b)fluoranthene	167	0	64	38	30-140
Benzo(k)fluoranthene	167	0	63	38	30-140
Benzo(a)pyrene	167	0	67	40	30-140
Ideno(1,2,3-cd)pyrene	167	0	77	46	30-140
Dibenz(a,h)anthrancene	167	0	78	47	30-140
Benzo(g,h,i) perylene	167	0	76	45	30-140

# Column to be used	to flag	recovery with a	an asterisk
---------------------	---------	-----------------	-------------

* Values outside of QC limits
Spike Recovery: 0 out of 16 outside limits

-	
COMMENTS:	

Lab Name:	STAT Analy	rsis Corporation	Contract:	Burns & McDonnell	
Lab Code:	702045	Case No.:	SAS No.:	SDG No.:	
LCS - Sample ID:		SBLNK 061501	_		

Compound	SPIKE ADDED (ug/Kg)	SAMPLE CONCENTRATION (ug/Kg)	MS CONCENTRATION (ug/Kg)	MS % REC #	QC LIMITS REC
Napthalene	167	0	66	39	30-140
Acenaphthylene	167	0	73	44	30-140
Acenaphthene	167	0	66	39	31-137
Fluorene	167	0	87	52	30-140
Phenanthrene	167	0	79	47	30-140
Anthracene	167	0	89	. 54	30-140
Fluoranthene	167	0	101	60	30-140
Pyrene	167	0	101	60	35-142
Benzo(a)anthracene	167	0	106	64	30-140
Chrysene	167	0	106	64	30-140
Benzo(b)fluoranthene	167	0	77	46	30-140
Benzo(k)fluoranthene	167	0	104	62	30-140
Benzo(a)pyrene	167	0	. 107	64	30-140
Ideno(1,2,3-cd)pyrene	167	0	101	61	30-140
Dibenz(a,h)anthrancene	167	0	95	57	30-140
Benzo(g,h,i) perylene	167	0	110	66	30-140

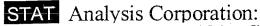
# Column to be used to flag * Values outside of QC limit		
Spike Recovery:	0 out of 16 outside limits	
COMMENTS:		

Lab Name:	STAT Analysis Corp	ooration	Contract:	Burns & McDo	onnell	
Lab Code:	702045	Case No.:	SAS No.:		SDG No.:	
LCS - Sample ID:		SBLNK-2 061501	,			

Compound	SPIKE ADDED (ug/Kg)	SAMPLE CONCENTRATION (ug/Kg)	MS CONCENTRATION (ug/Kg)	MS % REC #	QC LIMITS REC
Napthalene	167	0	76	46	30-140
Acenaphthylene	167	0	82	49	30-140
Acenaphthene	167	0	96	57	31-137
Fluorene	167	0	86	51	30-140
Phenanthrene	167	0	91	54	30-140
Anthracene	167	0	103	62	30-140
Fluoranthene	167	0	114	- 68	30-140
Pyrene	167	0	114	68	35-142
Benzo(a)anthracene	167	Ó	121	73	30-140
Chrysene	167	0	123	74	30-140
Benzo(b)fluoranthene	167	0	116	70	30-140
Benzo(k)fluoranthene	167	0	135	81	30-140
Benzo(a)pyrene	167	0	132	79	30-140
Ideno(1,2,3-cd)pyrene	167	0	162	97	30-140
Dibenz(a,h)anthrancene	167	0	152	91	30-140
Benzo(g,h,i) perylene	167	0	190	114	30-140

# Column to be used to	tag recovery with an asterisk		
* Values outside of QC	limits		
Spike Recovery:	0 out of 16 outside limits	4	
COMMENTS:			, , , , , , , , , , , , , , , , , , ,

Lab Name:	STAT Analysis Corpo	oration	Contract:	Burns & McDe	onnell	
Lab Code:	702051	Case No.:	SAS No.:		SDG No.:	
LCS - Sample ID:		SLCS 061801	_			


	SPIKE ADDED	SAMPLE CONCENTRATION	MS CONCENTRATION	MS %	QC LIMITS
Compound	(ug/Kg)	(ug/Kg)	(ug/Kg)	REC #	REC
Napthalene	167	0	71	. 43	30-140
Acenaphthylene	167	0	86	51	30-140
Acenaphthene	167	0	76	46	31-137
Fluorene	167	0	74	45	30-140
Phenanthrene	167	0	68	40	30-140
Anthracene	167	0	82	49	30-140
Fluoranthene	167	0	85	51	30-140
Pyrene	167	0	85	51	35-142
Benzo(a)anthracene	167	Ó	89	53	30-140
Chrysene	167	0	89	53	30-140
Benzo(b)fluoranthene	167	0	95	57	30-140
Benzo(k)fluoranthene	167	0	75	45	30-140
Benzo(a)pyrene	167	0	60	36	30-140
Ideno(1,2,3-cd)pyrene	167	0	50	30	30-140
Dibenz(a,h)anthrancene	167	0	53	32	30-140
Benzo(g,h,i) perylene	167	0	45	27 *	30-140

# Column to be used to * Values outside of QC			
Spike Recovery:	1 out of 16 outside limits		
COMMENTS:			
page 1 of 1		FORM III SV-2	OLM03.0

3F Soil PCB LCS Recovery

Lab Name	: <u>STAT</u>	<u>Analysis</u>	Contract: <u>Burns &</u>		<u>I</u>
		Site: Locat	ion: Group:		
Matrix Spi	ke – Sample	No.: LCS PCB 06/15/0	1		
waan op	ace sumpre	110 = 0.0	·		
) (C	3.40	T 00
		-	1		QC
	ADDED	CONCENTRATION	,		LIMITS
COMPOUND	(mg/Kg)	(mg/Kg)	(mg/Kg)	REC	REC
Aroclor 1016	1.0	0	0.922	92.2	30-150
ALOCIOI 1010	1.0				
1 1260	1.0	0	0.927	92.7	30-150
Arocior 1200	1.0		0.527	,	
	<u> </u>	· · · · · · · · · · · · · · · · · · ·			<u> </u>
	CDIZE	CAMDIE	MS	MS	QC
	1	1			LIMITS
		1	l '		REC
COMPOUND	(mg/Kg)	(mg/Kg)	(mg/Kg)	REC	KEC
	<u> </u>				
	· ·				
# Column to	SPIKE				
Project No.: 702045 Site: Location: Group: Matrix Spike – Sample No.: LCS PCB 06/15/01 SPIKE ADDED CONCENTRATION (mg/Kg) (mg/Kg) (mg/Kg) REC Aroclor 1016					
Project No.: 702045 Site: Matrix Spike – Sample No.: LCS PC SPIKE ADDED CONCENT (mg/Kg) (mg/F) Aroclor 1016 1.0 0 Aroclor 1260 1.0 0 SPIKE ADDED CONCENT (mg/Kg) (mg/F) FOR ADDED CONCENT (mg/Kg) (mg/F) SPIKE ADDED CONCENT (mg/Kg) (mg/F) # Column to be used to flag recovery values * Values outside of contract required QC lim RPD: out of outside limits Spike Recovery: o out of outside	reduied of mines				
RPD:	out of o	utside limits			
Spike Recove	ery: <u>0</u> out	of <u>1</u> outside limits		ł	
Comments: _		l			

FORM II PEST-2

2201 West Campbell Park Drive, Chicago, Illinois 60612-3547
Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

INORGANIC Initial Batch QC

Lab Name:

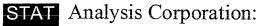
STAT Analysis Corporation

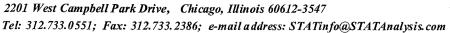
Contract: Burns & McDonnell

Project No.:

27194-3.03

Instrument: ICPMS, CV, LaChat


Batch No.:


702051

Associated Samples:

918744 - 918747

				_					Prepara		
Analyte	True	CS 1 (µg/I Found	L) %R	True	CS 2 (µg/I Found	_) %R	RPD	С	Blank	C	M
Arsenic	500	448	89.5	500	435	86.9	2.9		0.24		MS
Barium	500	506	101	500	496	99.1	2.1		0.40		MS
Cadmium	500	462	92.5	500	452	90.4	2.2		-0.02		MS
Chromium	500	470	94.0	500	455	91.0	3.2		0.30		MS
Lead	500	497	99.3	500	482	96.4	3.0		-0.07		MS
Mercury	2.50	2.54	102	2.50	2.45	98.0	3.6		0.00		CV
Selenium	500	431	86.1	500	423	84.5	1.9		0.27		MS
Silver	500	517	103	500	506	101	2.1		0.11		MS
Cyanide	250	250	100.0	250	250	100.0	0.0		-1.75		LC

INORGANIC Initial Batch QC

Lab Name:

STAT Analysis Corporation

Client Burns & McDonnell

Project No.:

27194-3.02

Instrument: ICPMS, CV

Batch No.:

702045

Associated Samples:

918691 - 918706

		5.111							Prepara	ition	
•	L	CS 1 (µg/I	L)	L	CS 2 (µg/I	L)	!		Blan	k	
Analyte	True	Found	%R	True	Found	%R	RPD	С		С	M
Arsenic	500	448	89.5	500	435	86.9	2.9		0.24		MS
Barium	500	506	101	500	496	99.1	2.1		0.40		MS
Cadmium	500	462	92.5	500	452	90.4	2.2		-0.02		MS
Chromium	500	470	94.0	500	455	91.0	3.2		0.30		MS
Lead	500	497	99.3	500	482	96.4	3.0		-0.07		MS
Mercury	2.50	2.54	102	2.50	2.45	98.0	3.6		0.00		CV
Selenium	500	431	86.1	500	423	84.5	1.9	·	0.27		MS
Silver	500	517	103	500	506	101	2.1		0.11		MS

MARVA

&

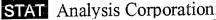
2201 West Campbell Park Drive, Chicago, Illinois 60612-3547
Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

INORGANIC Initial Batch QC 1

Lab Name:

Burns & McDonnell

nnell Contract:


Project No.:
Batch No.:

701808

2.7197-4.07

Instrument: ICPMS, CV, LaCHAT

									Preparat	ion	
	10	CS 1 (μg/L)	L	CS 2 (μg/L	.)			Blank		
Analyte	True	Found	′%R	True	Found	%R	RPD	С		С	M
Arsenic	500.0	418.00	83.6	500.0	436.20	87.2	4.3		0.04		MS
Barium	500.0	454.20	90.8	500.0	492.70	98.5	8.1		0.10		MS
Cadmium	500.0	436.40	87.3	500.0	471.00	94.2	7.6		-0.02		MS
Chromium	500.0	470.20	94.0	500.0	511.20	102.2	8.4		0.32		MS
Lead	500.0	462.00	92.4	500.0	504.30	100.9	8.8		0.23		MS
Mercury	2.5	2.54	101.6	2.5	2.60	104.0	2.3		0.00		CV
Nickel	500.0	463.20	92.6	500.0	498.70	99.7	7.4		0.05		MS
Selenium	500.0	392.10	78.4	500.0	407.50	81.5	3.9		0.06		MS
Silver	500.0	448.60	89.7	500.0	486.80	97.4	8.2		0.10		MS
Cyanide	250	285.072	114.0	250	251.677	100.7	12.4		-1.89		

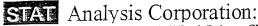
STAT Analysis Corporation:
2201 West Campbell Park Drive, Chicago, Illinois 60612-3547 Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

INORGANIC Initial Batch QC 2

Lab Name:

Burns & McDonnell

Contract:


Project No.:

2.7197-4.07

Instrument: ICPMS, CV, LaCHAT

701808 Batch No .:

									Prepara	ation	1
	10	CS 1 (μg/L)	L	CS 2 (μg/L	.)			Blan	k .	
Analyte	True	Found	′ %R	True	Found	%R	RPD	С		С	M
Arsenic	500.0	426.70	85.3	500.0	439.50	87.9	3.0		0.06		MS
Barium	500.0	462.80	92.6	500.0	507.10	101.4	9.1		0.15		MS
Cadmium	500.0	449.10	89.8	500.0	491.90	98.4	9.1		-0.01		MS
Chromium	500.0	478.00	95.6	500.0	533.20	106.6	10.9		0.34		MS
Lead	500.0	465.40	93.1	500.0	511.40	102.3	9.4		0.33		MS
Mercury	2.5	2.54	101.6	2.5	2.29	91.6	10.4		0.00		CV
Nickel	500.0	465.70	93.1	500.0	513.30	102.7	9.7		0.10		MS
Selenium	500.0	403.80	80.8	500.0	414.30	82.9	2.6		0.04		MS
Silver	500.0	465.50	93.1	500.0	500.10	100.0	7.2		0.17		MS
											<u> </u>
Cyanide	250	248.51	99.4	250	248.513	99.4	0.0		-1.89		

2201 West Campbell Park Drive, Chicago, Illinois 60612-3547 Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

INORGANIC Initial Batch QC

Lab Name:

STAT Analysis Corporation

Contract: Burns & McDonnell

Project No.:

27194-4.07, Peoples-Rogers Park

Instrument: ICPMS

Batch No.:

701808, 701817, 701824, 701830

Matrix:

SPLP

Concentration Units: µg/L

917184, 917179 Associated Samples:

			· · · · · · · · · · · · · · · · · · ·						Prepar	ation	
		LCS 1 (µg	g/L)	LCS 2 (µg/L)			Blank			nk	
Analyte	True	Found	%R	True	Found	%R	RPD	C		С	M
Barium	500	478	95.6	500	485	96.9	1.35		-0.10		MS
Cadmium	500	488	97.6	500	499	99.7	2.17		-0.02		MS
Chromium	500	485	97.0	500	488	97.5	0.56		0.02		MS
Lead	500	466	93.1	500	474	94.7	1.70		0.03		MS
Silver	500	446	89.1	500	455	90.9	2.02		-0.05		MS

INORGANIC MATRIX SPIKE AND MATRIX SPIKE DUPLICATE RECOVERY

Lab Name:

STAT Analysis Corporation

Project No.:

27194-4.07, Peoples-Rogers Park

Instrument: ICPMS

Batch No.:

701808, 701817, 701824, 701830

Sample No. 917184

Matrix:

SPLP

Sample Spike No.: 917184MS

1.000

Concentration Units: µg/L

Sampl Spike Duplicate No: 917184MSD

1.000

Weight

Associated Samples:

917184, 917179

Spike	Spike										
Added	Added	Sample								_	
MS	MSD	Result	MS	%R	С	MSD	%R	C		Q	M
500	500	1,137	1,591	90.8		1,607	94.0		1.00		MS
	500	0.16	476	95.2		479	95.8		0.65	<u></u>	MS
			485	91.3		483	91.0		0.31		MS
				93.6		493	92.9		0.75		MS
500	500	0.02	449	89.7		444	88.8		1.01		MS
	Added MS 500 500 500 500	Added Added MS MSD 500 500 500 500 500 500 500 500 500 50	Added MSD Added Result 500 500 1,137 500 500 0.16 500 500 28.1 500 500 29.0	Added MS Added MSD Sample Result MS 500 500 1,137 1,591 500 500 0.16 476 500 500 28.1 485 500 500 29.0 497	Added MS Added MSD Sample Result MS %R 500 500 1,137 1,591 90.8 500 500 0.16 476 95.2 500 500 28.1 485 91.3 500 500 29.0 497 93.6	Added MSD Result MS MS C 500 500 1,137 1,591 90.8 500 500 0.16 476 95.2 500 500 28.1 485 91.3 500 500 29.0 497 93.6	Added MS Added MSD Sample Result MS %R C MSD 500 500 1,137 1,591 90.8 1,607 500 500 0.16 476 95.2 479 500 500 28.1 485 91.3 483 500 500 29.0 497 93.6 493	Added MSD Added MSD Result Result MS MS C MSD %R 500 500 1,137 1,591 90.8 1,607 94.0 500 500 0.16 476 95.2 479 95.8 500 500 28.1 485 91.3 483 91.0 500 500 29.0 497 93.6 493 92.9	Added MSD Added MSD Result Result MS MS C MSD %R C 500 500 1,137 1,591 90.8 1,607 94.0 500 500 0.16 476 95.2 479 95.8 500 500 28.1 485 91.3 483 91.0 500 500 29.0 497 93.6 493 92.9	Added MSD Added MSD Result Result MS %R C MSD %R C RPD 500 500 1,137 1,591 90.8 1,607 94.0 1.00 500 500 0.16 476 95.2 479 95.8 0.65 500 500 28.1 485 91.3 483 91.0 0.31 500 500 29.0 497 93.6 493 92.9 0.75	Added MS Added MSD Result Result MS %R C MSD %R C RPD Q 500 500 1,137 1,591 90.8 1,607 94.0 1.00 500 500 0.16 476 95.2 479 95.8 0.65 500 500 28.1 485 91.3 483 91.0 0.31 500 500 29.0 497 93.6 493 92.9 0.75

2201 West Campbell Park Drive, Chicago, Illinois 60612-3547 Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

INORGANIC Initial Batch QC

Lab Name:

STAT Analysis Corporation

Contract: Burns & McDonnell

Project No.:

27194-4.07, Peoples-Rogers Park

Instrument: ICPMS

Batch No.:

701808, 701817, 701824, 701830

Matrix:

SPLP

Concentration Units: µg/L

Associated Samples: 917123

									Prepar	ation	
	L	CS 1 (mg/	(L)	LCS	3 2 (mg/L))			Bla	nk	
Analyte	True	Found	%R	True	Found	%R	RPD	C		C	M
Barium	500	524	105	500	512	102	2.32		-0.02		MS
Cadmium	500	503	101	500	493	98.6	2.05		-0.03		MS
Chromium	500	523	105	500	514	103	1.72		0.02		MS
Lead	500	493	98.6	500	483	96.6	2.07		-0.03		MS
Silver	500	512	102	500	486	97.2	5.23		-0.10		MS

INORGANIC MATRIX SPIKE AND MATRIX SPIKE DUPLICATE RECOVERY

Lab Name:

STAT Analysis Corporation

Project No.:

27194-4.07, Peoples-Rogers Park

Instrument: ICPMS

701808, 701817, 701824, 701830

Sample No. 918141

Batch No.:

Weight

Matrix:

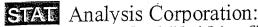
SPLP

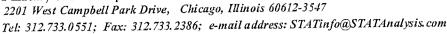
Sample Spike No.: 918141 MS

1.000

Concentration Units

μg/L


Sampl Spike Duplicate No: 918141 MSD


1.000

Associated Samples: 917123

	Spike	Spike										
	Added	Added	Sample									
Analyte	MS	MSD	Result	MS	%R	С	MSD	%R_	С	RPD	Q	M
Barium	500	500	154	709	111		715	112		0.83		MS
Cadmium	500	500	0.12	535	107		539	108		0.67		MS
Chromium	500	500	36.6	579	109		584	109	-	0.77		MS
Lead	500	500	18.0	543	105		559	108		2.98		MS
Silver	500	500	-0.38	61.7	12.4	#	59.9	12.1	#	2.93		MS

[#] Attributed to Matrix Interference

INORGANIC Initial Batch QC

Lab Name:

STAT Analysis Corporation

Contract: Burns & McDonnell

Project No.:

27194-4.07, Peoples-Rogers Park

Instrument: ICPMS

Batch No.:

701808, 701817, 701824, 701830

Matrix:

SPLP

Concentration Units: Associated Samples: $\mu g/L$ 916985, 916986, 916988, 916990, 917034, 917035, 917037, 917110, 917113,

917119, 917120, 917125, 917168, 917169, 917172, 917174, 917176, 917178, 917180, 917181

									Prepar	ration	
	L	CS 1 (µg/	L)	L	CS 2 (µg/I	<u>_</u>)			Bla	nk	
Analyte	True	Found	%R	True	Found	%R	RPD	С	ş	С	M
Barium	500	529	106	500	491	98.1	7.55		0.12		MS
Cadmium	500	562	112	500	517	103	8.41		0.10		MS
Chromium	500	546	109	500	498	99.6	9.23		0.23		MS
Lead	500	529	106	500	489	97.8	7.94		0.28		MS
Silver	500	550	110	500	496	99.3	10.2		0.24		MS

INORGANIC MATRIX SPIKE AND MATRIX SPIKE DUPLICATE RECOVERY

Lab Name:

STAT Analysis Corporation

Project No.:

27194-4.07, Peoples-Rogers Park

Instrument: ICPMS

Batch No .:

701808, 701817, 701824, 701830

Sample No. 916990

Weight 1.000

Matrix:

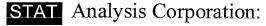
SPLP

Sample Spike No.: 916990 MS

Concentration Units:

μg/L

Sampl Spike Duplicate No: 916990 MSD


1.000

Associated Samples:

916985, 916986, 916988, 916990, 917034, 917035, 917037, 917110, 917113,

917119, 917120, 917125, 917168, 917169, 917172, 917174, 917176, 917178, 917180, 917181

	Spike	Spike										
	Added	Added	Sample								_	
Analyte	MS	MSD	Result	MS	%R	С	MSD	%R	C	RPD	Q	M
Barium	500	500	285	720	87.0		722	87.4		0.31		MS
Cadmium	500	500	0.02	424	84.7		432	86.3		1.87		MS
Chromium	500	500	4.21	434	86.0		436	86.3		0.44		MS
Lead	500	500	2.27	433	86.1		429	85.4		0.84		MS
Silver	500	500	0.02	415	83.0		416	83.2		0.34		MS

2201 West Campbell Park Drive, Chicago, Illinois 60612-3547 Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

INORGANIC Initial Batch QC

Lab Name:

STAT Analysis Corporation

Client Burns & McDonnell

Project No.:

27194-3.02

Instrument: LaCHAT

Batch No.:

702045

Associated Samples:

918691 - 918702

									Prepara	ation	
	L	CS 1 (µg/I	L)	L	CS 2 (μg	/L)			Blan	ık	
Analyte	True	Found	%R	True	Found	%R	RPD	C		C	M
Cyanide	250	268	107	250	272	109	1.4		11.37		LC
						-					

INORGANIC Matrix Spike and Matrix Spike Dupliacte Recovery Form

Lab Name:

STAT Analysis Corporation

Instrument: LaCHAT

Project No.:

2194-3.02

Cyanide

Batch No.:

702045

Sample No.: 918625

Weight

Matrix (soil/water):

Sample Spike No.: 918625 MS

Soil

1.000

Concentration Units:

μg/L

Sample Spike Duplicate No.: 918625 MSD

1.000

Associated Samples:

918691 - 918702

Analyte	Spike Added MS	Spike Added MSD	Sample Result	MS	%R	C	MSD	%R	С	RPD	Q	M
Cyanide	250	250	1.63	268	107		265	106		1.1		LC

Analysis Corporation:
2201 West Campbell Park Drive, Chicago, Illinois 60612-3547 Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

INORGANIC Initial Batch QC

Lab Name:

Burns & McDonnell

Contract:

Project No.:

27194-4.07

Instrument: ICPMS, CV, LaCHAT

Batch No.: 701830

									Preparat	ion	
	LC	CS 1 (mg/L)) .	L	CS 2 (mg/L)			Blank		
Analyte	True	Found	%R	True	Found	%R	RPD	С		С	M
Arsenic	500	466	93.2	500	444	88.8	4.9		0.10		MS
Barium	500	520	104	500	498	99.7	4.3		0.12		MS
Cadmium	500	491	98.3	500	469	93.7	4.7		-0.02		MS
Chromium	500	505	101	500	490	97.9	3.1		0.19		MS
Lead	500	541	108	500	518	104	4.5		-0.14		MS
Mercury	2.50	2.21	88.4	2.50	2.26	90.4	2.2		-0.14		CV
Selenium	500	429	85.9	500	408	81.5	5.2		0.12		MS
Silver	500	534	107	500	509	102	4.8		0.65		MS
Cyanide	250	258	103	250	222	88.8	15.1		-21.6		LC

STAT Analysis Corporation:
2201 West Campbell Park Drive, Chicago, Illinois 60612-3547 Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

INORGANIC Initial Batch QC

Lab Name:

STAT Analysis

Project No.:

27194-4.07

Batch No.:

701817

Contract: Burns & McDonnell

Instrument: ICPMS, CV, LaCHAT

									Preparati	on	
	L	CS 1 (μg/L))	L	CS 2 (µg/L	<i>a</i>)			Blank		
Analyte	True	Found	%R	True	Found	%R	RPD	C		_ <u>C</u>	M
Arsenic	500	419	83.8	500	400	79.9	4.7		0.07	<u> </u>	MS
Barium	500	480	96.0	500	465	93.0	3.2		-0.25		MS
Cadmium	500	443	88.6	500	425	85.0	4.1		. 0.05		MS
Chromium	500	481	96.3	500	462	92.5	4.0		0.41		MS
Lead	500	477	95.4	500	459	91.9	3.8		0.26		MS
Mercury	2.50	2.61	104	2.50	2.63	105	0.8		0.00		CV
Selenium	500	387	77.3	500	372	74.4	3.9		-0.03		MS
Silver	500	464	92.9	500	442	88.5	4.8		1.61		MS
Cyanide	250	249	99.4	250	249	99.4	0.0		-1.89		LC

2201 West Campbell Park Drive, Chicago, Illinois 60612-3547
Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

INORGANIC Initial Batch QC

Lab Name:

STAT Analysis Corporation

Client: Burns & McDonnell

Project No.:

27194-3.02

Instrument: LaCHAT

Batch No.:

702045

Associated Samples:

918703 - 918706

									Prepara	ation	
	L	CS 1 (µg/I	ر)	L	CS 2 (µg/I	۲)	ļ		Blan	ık	
Analyte	True	Found	%R	True	Found	%R	RPD	C		С	M
Cyanide	250	262	105	250	261	105	0.1		11.37		LC
											LC

INORGANIC Matrix Spike and Matrix Spike Dupliacte Recovery Form

Lab Name:

STAT Analysis Corporation

Instrument: LaCHAT

Project No.:

2194-3.02

Cyanide

Batch No.:

702045

Sample No.: 918703

Matrix (soil/water):

Soil

Sample Spike No.: 918703 MS

Concentration Units:

μg/L

Sample Spike Duplicate No.: 918703 MS

Associated Samples:

918703 - 918706

	Spike	Spike										
	Added	Added	Sample									
Analyte	MS	MSD	Result	MS	%R	C	MSD	%R	C	RPD	Q	M
Cyanide	250	250	9.40	262	101		262	101		0.1		LC

Groundwater Laboratory Blank Analysis Data Sheets

The Peoples Gas Light and Coke Company
The Rogers Park Sub-Shop
Main Parcel

EPA SAMPLE NO.

VBLK070201

Lab Name:	STAT Analysis		Contract:	_ VBER010201
Lab Code:		Case No.: 702087	SAS No.:	SDG No.:
Lab File ID:	07020110.D	·	Lab Sample ID:	VBLK070201
Date Analyze	ed: 07/02/01		Time Analyzed:	15.38
GC Column:	RTX502. ID:	0.25 (mm)	Heated Purge:	(Y/N) Y
Instrument ID): <u>VOC-1</u>			

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID .	TIME ANALYZED
01	RPM-MW001-002M	918958MS B&M 702087	07020112.D	16:53
02	RPM-MW001-002M	918958MSD B&M 702087	07020113.D	17:27
03	RPM-MW001-002	918958 B&M 702087	07020114.D	18:02
04	RPM-MW002-002	918959 B&M 702087	07020115.D	18:37
05	RPM-MW003-002	918960 B&M 702087	07020116.D	19:12
06	RPM-MW004-002	918961 B&M 702087	07020117.D	19:47
07	RPM-MW005-002	918962 B&M 702087	07020118.D	20:22

COMMENTS:

Method : C:\HPCHEM\1\DATA\070201\5030.M (Chemstation Integrator)
Title : Method 8260
Last Update : Mon Jul 02 16:12:07 2001
Response via : Initial Calibration

Non-Spiked Sample: 07020110.D

Spike sample

Spike Duplicate Sample

File ID: 07020108.D Sample: VLCS070201 Acq Time: 2 Jul 2001 3:03 pm 07020108.D VLCS070201 2 Jul 2001

3:03 pm

					-				
Compound	Sample Conc	Spike Added	Spike Res	Dup Res	Spike %Rec	Dup %Rec	RPD	QC RPD	Limits % Rec
Dichlorodifluorometh Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluorometha 1,1-Dichloroethene Methylene chloride trans-1,2-Dichloroet 1,1-Dichloroethane 2,2-Dichloropropane cis-1,2-Dichloroethe Chloroform Bromochloromethane 1,1,1-Trichloroethan 1,1-Dichloropropene Carbon tetrachloride 1,2-Dichloroethane enzene richloroethene 1,2-Dichloropropane Bromodichloromethane Dibromomethane cis-1,3-Dichloroprop Toluene trans-1,3-Dichloroprop Toluene trans-1,3-Dichloroprop Toluene trans-1,3-Dichloroprop 1,1,2-Trichloroethan 1,3-Dichloropropane Tetrachloroethene Dibromochloromethane 1,2-Dibromoethane 1,2-Tetrachloroe m&p-Xylene Styrene Styrene Isopropylbenzene Bromoform 1,1,2,2-Tetrachloroe 1,2,3-Trichloropropa n-Propylbenzene Bromoform 1,1,2,2-Tetrachloroe 1,2,3-Trichloropropa n-Propylbenzene Bromobenzene 1,3,5-Trimethylbenze 2-Chlorotoluene 4-Chlorotoluene 4-Chlorotoluene 4-Chlorotoluene 1,2,4-Trimethylbenze 1,2-Dichlorobenzene	1.0 0.0 12.3 0.0 0.0 0.0 0.0	50000000000000000000000000000000000000	65516410 655	655164104433223657465444444444444444444444444444444444	1279388820886653441033999999999999999999999999999999999	127938820886653410339999999999999999999999999999999999	000000000000000000000000000000000000000	15555555555555555555555555555555555555	50-150 5

- Fails Limit Check

5030.M

Tue Jul 03 07:37:18 2001

MSDA

EPA SAMPLE NO.

WBLKWOI

Lab Name: STAT Analysis

Contract: Burns&McDonnell

Lab Code:

Case No.:

SDG No.:

Lab File ID:

06270107.D

SAS No .: Lab Sample ID: PNA BLANK

Instrument ID:

GC/MS-SVOC-2

Date Extracted:

06/27/01

Matrix: (soil/water)

WATER

Date Analyzed:

06/27/01

Level: (low/med)

LOW

Time Analyzed:

19:40

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	EPA	LAB	LAB	DATE
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	PNA SOIL LCS 06/27/01	PNASLCS062701	06270108.D	06/27/01
02	RPM-MW001-002	918958	06270109.D	06/27/01
03	RPM-MW002-002	918959	06270110.D	06/27/01
04	RPM-MW003-002	918960	06270111.D	06/27/01
05	RPM-MW004-002	918961	06270112.D	06/27/01
06	917841	917841	05210137.D	05/21/01
07	917841MS	917841MS	05210138.D	05/21/01
08	917841MSD	917841MSD	05210139.D	05/21/01
09				
10				
11				

	•		
		_ =	
	*	-	
	•		

COMMENTS:

Lab Name:	STAT Analysis	Corporation	Contract:	Burns&McDonnell	
Lab Code:	702087	Case No.:	SAS No.:	SDG No	•
LCS - Sample ID:		WLCS 062701			

	SPIKE	SAMPLE	MS	MS	QC
	ADDED	CONCENTRATION	CONCENTRATION	%	LIMITS
Compound	(ug/L)	(ug/L)	(ug/L)	REC #	REC
Napthalene	10	0	5.39	. 54	30-140
Acenaphthylene	. 10	. 0	5.77	58	30-140
Acenaphthene	10	0	4.96	50	31-137
Fluorene	10	0	5.36	54	30-140
Phenanthrene	10	0	5.51	55	30-140
Anthracene	10	0	6.44	64	30-140
Fluoranthene	10 .	0	5.96	60	30-140
Pyrene	10	0	5.90	59	35-142
Benzo(a)anthracene	10	0	5.03	50	30-140
Chrysene .	10	0	5.08	51	30-140
Benzo(b)fluoranthene	10	0	5.85	59	30-140
Benzo(k)fluoranthene	10	0	5.23	52	30-140
Benzo(a)pyrene	10	0	4.53	. 45	30-140
Ideno(1,2,3-cd)pyrene	10	0	3.65	37	30-140
Dibenz(a,h)anthrancene	10	0	3.68	37	30-140
Benzo(g,h,i) perylene	10	0	3.36	34	30-140

# Column to be used to flag	g recovery with an astensk
-----------------------------	----------------------------

0 out of 16 outside limits

COMMENTS:		· .	

page 1 of 1

FORM III SV-2

^{*} Values outside of QC limits Spike Recovery:

EPA SAMPLE NO.

WBLKWOI

Lab Name: STAT Analysis

Contract: Burns&McDonnell

Lab Code:

Case No.:

SDG No.:

Lab File ID:

06280119.D

SAS No.: Lab Sample ID: PNA BLANK

Instrument ID:

GC/MS-SVOC-2

Date Extracted:

06/28/01

Matrix: (soil/water)

WATER

Date Analyzed:

06/28/01

Level: (low/med)

LOW

Time Analyzed:

20:08

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	EPA	LAB	LAB	DATE
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	PNA SOIL LCS 06/28/01	PNASLCS062801	06280120.D	06/28/01
02	RPM-MW005-002	918962	06280121.D	06/28/01
03				

COMMENTS:

3/90

Lab Name:	STAT Analysis C	orporation	Contract	Burns & McD	onnel	·
Lab Code:	702087	Case No.:	SAS No :		SDG No.:	
LCS - Sample ID:		WLCS 062801	_			

	SPIKE	SAMPLE	MS	MS	QC
	ADDED	CONCENTRATION	CONCENTRATION	%	LIMITS
Compound	(ug/L)	(ug/L)	(ug/L)	REC #	REC
Napthalene	10	0	6.34	63	30-140
Acenaphthylene	10	0	6.91	69	30-140
Acenaphthene	10	0	6.76	68	31-137
Fluorene	10	0.	6.91	69	30-140
Phenanthrene	10	0	6.47	65	30-140
Anthracene	10	0	7.53	75	30-140
Fluoranthene	10	0	6.90	69	30-140
Pyrene	10	0	6.86	69	35-142
Benzo(a)anthracene	10	0	5.79	58	30-140
Chrysene	10	0	5.96	60	30-140
Benzo(b)fluoranthene	10	0 "	5.62	56	30-140
Benzo(k)fluoranthene	10	0	6.35	64	30-140
Benzo(a)pyrene	10	0	5.78	58	30-140
Ideno(1,2,3-cd)pyrene	10	0	5.26	53	30-140
Dibenz(a,h)anthrancene	10	0	5.06	51	30-140
Benzo(g.h.i) perylene	10	0	5.25	53	30-140

# Column to be used to flag	recovery with an asterisk
* Values outside of QC limits	
Spike Recovery:	0 out of 16 outside limits

COMMENTS:	**	

page 1 of 1

FORM III SV-2

Soil Laboratory Control Standard Data Sheets

The Peoples Gas Light and Coke Company
The Rogers Park Sub-Shop
Main Parcel

EPA SAMPLE NO.

SBLKSOI

Lab Name: STAT Analysis

Lab Code:

Case No.:

Contract: <u>Burns&McDonnel</u>

SAS No.:

SDG No.:

Lab File ID:

05070108.D

Lab Sample ID: PNA BLANK

05/07/01

Instrument ID:

GC/MS-SVOC-2

Date Extracted:

05/07/01

Matrix: (soil/water)

SOIL

Date Analyzed

05/07/01

Level: (low/med)

LOW

Time Analyzed:

16:41

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	L.D. 4	T . D		7"
	EPA	LAB	LAB	DATE
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	PNA SOIL LCS	PNASLCS050701	05070108.D	05/07/01
	05/07/01			
02	RPM-SB34-001	917101	05070124.D	05/07/01
03	RPM-SB41-001	917102	05070125.D	05/07/01
04	RPM-SB40-001	917103	05070126.D	05/07/01
0.5	RPM-SB40-002	917104	05070127.D	05/07/01
06	RPM-SB40-003	917105	05070128.D	05/07/01
07	RPM-SB47-001	917106	05070129.D	05/07/01
08	RPM-SB46-001	917107	05070130.D	05/07/01
09	RPM-SB46-002	917108	05070131.D	05/07/01
10	RPM-SB45-001	917109	05070132.D	05/07/01
11				
12				
13				
14				
15				
16				
17				*****
18				777
19		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
20				
21				
22		-		
23				
24				
25				
26				
_				

COMMENTS:

3 C SOIL POLYNUCLEAR AROMATIC LABORATORY CONTROL SAMPLE RECOVERY

Lab Name:	STAT Analysis Corp	oration	Contract:	Burns&McDo	nnel	
Lab Code:	701824	Case No.:	SAS No:		SDG No:	
Matrix Spike - Sam	nple ID:	SBLNK 050701				

Compound	SPIKE ADDED (ug/Kg)	SAMPLE CONCENTRATION (ug/Kg)	MS CONCENTRATION (ug/Kg)	MS % REC #	QC LIMITS REC
Napthalene	167	. 0	65	39	30-140
Acenaphthylene	167	0	74	44	30-140
Acenaphthene	167	0	74	44	31-137
Fluorene	167	0	70 .	42	30-140
Phenanthrene	167	0	76	45	30-140
Anthracene	167	0	82	49	30-140
Fluoranthene	167	0	86	52	30-140
Pyrene	167	0	85	51	35-142
Benzo(a)anthracene	167	0.	87	52	30-140
Chrysene	167	0	117	70	30-140
Benzo(b)fluoranthene	167	0	129	77	30-140
Benzo(k)fluoranthene	167	0	96	58	30-140
Benzo(a)pyrene	167	0	84	50	30-140
Ideno(1,2,3-cd)pyrene	167	0	93	56	30-140
Dibenz(a,h)anthrancene	167	0	139	83	30-140
Benzo(g.h.i) perylene	167	0	87	52	30-140

Lab Name:	STAT Analysis	Corporation	Contract: <u>Burn</u>	s&McDonnel	
Lab Code:	701824	Case No.:	SAS No.:	SDG No.:	
Matrix Spike - S	Sample ID:	SBLNK 050801	·		

Compound	SPIKE ADDED (ug/Kg)	SAMPLE CONCENTRATION (ug/Kg)	MS CONCENTRATION (ug/Kg)	MS % REC #	QC LIMITS REC
Napthalene	167	0	64	38	30-140
Acenaphthylene	167	0	74	44	30-140
Acenaphthene	167	0	72	43	31-137
Fluorene	167	0	70	42	30-140
Phenanthrene	167	0	75	45	30-140
Anthracene	167	0	80	48	30-140
Fluoranthene	167	0	81	48	30-140
Pyrene	167	0	79	48	35-142
Benzo(a)anthracene	167	0	82	49	30-140
Chrysene	167	0	108	64	30-140
Benzo(b)fluoranthene	167	0	100	60	30-140
Benzo(k)fluoranthene	167	0	83	50	30-140
Benzo(a)pyrene	167	0	79	47	30-140
Ideno(1,2,3-cd)pyrene	167	0	92	55	30-140
Dibenz(a,h)anthrancene	167	0	138	83	30-140
Benzo(g,h,i) perylene	167	0	87	52	30-140

3 C SOIL POLYNUCLEAR AROMATIC LABORATORY CONTROL SAMPLE RECOVERY

Lab Name:	STAT Analysis Corp	oration	Contract:	Burns&McDo	nnel	
Lab Code:	701830	Case No.:	SAS No.:		SDG No.:	
Matrix Spike - San	nple ID:	SBLNK 050901				

Compound	SPIKE ADDED (ug/Kg)	SAMPLE CONCENTRATION (ug/Kg)	MS CONCENTRATION (ug/Kg)	MS % REC #	QC LIMITS REC
Napthalene	167	0	62	37	30-140
Acenaphthylene	167	0	71	43	30-140
Acenaphthene	167	0	68	41	31-137
Fluorene	167	0	73	44	30-140
Phenanthrene	167	0	74	45	30-140
Anthracene	167	0	81	48	30-140
Fluoranthene	167	0	84	50	30-140
Pyrene	.167	0	84	50	35-142
Benzo(a)anthracene	167	0	83	50	30-140
Chrysene	167	0	110	66	30-140
Benzo(b)fluoranthene	167	0	103	62	30-140
Benzo(k)fluoranthene	167	0	85	51	30-140
Benzo(a)pyrene	167	0	83	50	30-140
Ideno(1,2,3-cd)pyrene	167	0	105	63	30-140
Dibenz(a,h)anthrancene	167	0	156	93	30-140
Benzo(g,h,i) perylene	167	0	100	60	30-140

#	Column	to	be	used	to	flag	recovery	with	an	asterisk
---	--------	----	----	------	----	------	----------	------	----	----------

* Values outside of QC limits Spike Recovery: 0 out of 16 outside limits

COMMENTS:	

OLM03.0

3 C SOIL POLYNUCLEAR AROMATIC LABORATORY CONTROL SAMPLE RECOVERY

Lab Name:_	STAT Analysis	s Corporation	Contract: <u>Burns&</u>	McDonnel	
Lab Code: _	701830	Case No.:	SAS No.:	SDG No.:	
Matrix Spike	- Sample ID:	SBLNK-2 050901			

Compound	SPIKE ADDED (ug/Kg)	SAMPLE CONCENTRATION (ug/Kg)	MS CONCENTRATION (ug/Kg)	MS % REC #	QC LIMITS REC
Napthalene	167	0	53	32	30-140
Acenaphthylene	167	0	58	35	30-140
Acenaphthene	167	0	63	38	31-137
Fluorene	167	0	68	41	30-140
Phenanthrene	167	0	73	43	30-140
Anthracene	167	0	79	47	30-140
Fluoranthene	167	0	86	51	30-140
Pyrene	167	0	88	53	35-142
Benzo(a)anthracene	167	0	75	45	30-140
Chrysene	167	0	101	60	30-140
Benzo(b)fluoranthene	167	0	64	38	30-140
Benzo(k)fluoranthene	167	0	63 .	38	30-140
Benzo(a)pyrene	167	0	67	40	30-140
Ideno(1,2,3-cd)pyrene	167	0	77	46	30-140
Dibenz(a,h)anthrancene	167	0	. 78	47	30-140
Benzo(g,h,i) perylene	167	0	76	45	30-140

# Column to be used to flag recover	y with an	asterisk
-------------------------------------	-----------	----------

* Values outside of QC limits Spike Recovery: 0 out of 16 outside limits

COMMENTS:	

OLM03.0

4B SEMIVOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.

SBLKSOI

ı	Lab	NI	am	<u> </u>	QT	ΔΤ	Δr	اد	vei	6
ł	an	IN	am	e	31.	АΙ	Αſ	aı	VSI	2

Contract: Burns&McDonnel

SDG No.:

Lab Code: Lab File ID:

Case No.: 05100103.D

SAS No.:

Lab Sample ID: PNA BLANK

Instrument ID:

GC/MS-SVOC-2

Date Extracted:

05/10/01

Matrix: (soil/water) SOIL

Date Analyzed:

05/10/01

Level: (low/med)

LOW

Time Analyzed:

<u>17:24</u>

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	EPA	LAB	LAB	DATE
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	PNA SOIL LCS	PNASLCS051001	05100104.D	05/10/01
	05/10/01			
02	RPM-SB56-003	917181	05100128.D	05/10/01
03	RPM-SB56-004	917182	05100129.D	05/10/01
04	RPM-SB57-001	917184	05100130.D	05/10/01
05				
06				
07				
08				
09				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
25				
26				

COMMENTS:			
	 		—

3 C SOIL POLYNUCLEAR AROMATIC LABORATORY CONTROL SAMPLE RECOVERY

Lab Name:	STAT Analysis Corp	oration	Contract:	Burns&McDor	nnel _	
Lab Code:	701830	Case No.:	SAS No.:		SDG No:	
Matrix Spike - Sam	nple ID:	SBLNK 051001				

Compound	SPIKE ADDED (ug/Kg)	SAMPLE CONCENTRATION (ug/Kg)	MS CONCENTRATION (ug/Kg)	MS % REC #	QC LIMITS REC
Napthalene	167	0	46	27 #	30-140
Acenaphthylene	167	0	50	30	30-140
Acenaphthene	167	0	60	36	31-137
Fluorene	167	0	64	38	30-140
Phenanthrene	167	- O .	57	34	30-140
Anthracene	167	0 .	59	35	30-140
Fluoranthene	167	0	64	39	30-140
Pyrene	167	0	64	38	35-142
Benzo(a)anthracene	167	0	66	39	30-140
Chrysene	167	0	87	52	30-140
Benzo(b)fluoranthene	167	0	82	49	30-140
Benzo(k)fluoranthene	167	0	67	40	30-140
Benzo(a)pyrene	167	0	. 62	37	30-140
Ideno(1,2,3-cd)pyrene	167	0	75	45	30-140
Dibenz(a,h)anthrancene	167	0	110	66	30-140
Benzo(g,h,i) perylene	167	0	73	44	30-140

# Column	to be used to	flag recovery with	an asterisk

* Values outside of QC limits

Spike Recovery: 1 out of 16 outside limits

COMMENTS:		4.5
COMMENTO.	 	

OLM03.0

4B SEMIVOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.

SBLKSOI

Lab Name: STAT Analysis

Contract: Burns&McDonnell

Lab Code:

Case No.:

SAS No.:

SDG No.:

Lab File ID:

06170106.D

Lab Sample ID: PNA BLANK

Instrument ID:

GC/MS-SVOC-3

Date Extracted:

06/15/01

Matrix: (soil/water) SOIL

Date Analyzed:

06/17/01

Level: (low/med)

LOW

Time Analyzed:

<u>13:47</u>

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	EPA	LAB	LAB	DATE
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	PNA SOIL LCS-2 06/15/01	PNASLCS-2 061501	06170107.D	06/17/01
02	RPM-SB075-001	918694	06170108.D	06/17/01
03	RPM-SB077-001	918695	06180109.D	06/17/01
04	RPM-SB077-002	9187696	06170110.D	06/17/01
05	RPM-SB076-001	918697	06170111.D	06/17/01
06	RPM-SB076-002	918698	06170112.D	06/17/01
07	RPM-SB078-001	918699	06170113.D	06/17/01
08	RPM-SB078-002	918700	06170114.D	06/17/01
09	RPM-SB079-001	918701	06170115.D	06/17/01
10	RPM-SB079-002	918702	06170116.D	06/17/01
11	RPM-SB080-001	918703	06170117.D	06/17/01
12	RPM-SB080-001D	918703D	06180121.D	06/18/01
13	RPM-SB081-001	918704	06170118.D	06/17/01
14	RPM-SB081-001D	918704D	06180120.D	06/18/01
15	RPM-SB081-002	917805	06170119.D	06/17/01
16	RPM-SB082-001	918706	06170120.D	06/17/01
17	RPM-SB082-001MS	918706MS	06170121.D	06/17/01
18	RPM-SB082-001MSD	918706MSD	06170122.D	06/17/01

COMMENTS:			

3 C SOIL POLYNUCLEAR AROMATIC LABORATORY CONTROL SAMPLE RECOVERY

Lab Name:	STAT Analysis Corporation		Contract:	Burns & McDonnell			
Lab Code:	702045	Case No.:	SAS No.:	SI	DG No.:	***************************************	
LCS - Sample ID:		SBLNK 061501					

	SPIKE ADDED	SAMPLE CONCENTRATION	MS CONCENTRATION	MS %	QC LIMITS
Compound	(ug/Kg)	(ug/Kg)	(ug/Kg)	REC #	REC
Napthalene	167	0	66	39	30-140
Acenaphthylene	167	0	73	44	30-140
Acenaphthene	167	0	66	39	31-137
Fluorene	167	0	87	52	30-140
Phenanthrene	167	0	79	47	30-140
Anthracene	167	0	89	54	30-140
Fluoranthene	167	0	101	60	30-140
Pyrene	167	0	101	60	35-142
Benzo(a)anthracene	167	0	106	64	30-140
Chrysene	167	0	106	64	30-140
Benzo(b)fluoranthene	167	0	77	46	30-140
Benzo(k)fluoranthene	167	0	104	62	30-140
Benzo(a)pyrene	167	0	. 107	64	30-140
Ideno(1,2,3-cd)pyrene	167	0	101	61	30-140
Dibenz(a,h)anthrancene	167	0	95	57	30-140
Benzo(g,h,i) perylene	167	- 0	110	66	30-140

# Column to be used to	flag recovery with an asterisk		
* Values outside of QC	limits		
Spike Recovery:	0 out of 16 outside limits		
		,	
COMMENTS:			

OLM03.0

3 C SOIL POLYNUCLEAR AROMATIC LABORATORY CONTROL SAMPLE RECOVERY

Lab Name:	STAT Analysis Cor	poration	Contract:	Burns & McDo	onnell	
Lab Code:	702045	Case No.:	SAS No.:		SDG No.:	
LCS - Sample ID:	·	SBLNK-2 061501	n.			

	SPIKE	SAMPLE	MS	MS	QC
	ADDED	CONCENTRATION	CONCENTRATION	%	LIMITS
Compound	(ug/Kg)	(ug/Kg)	(ug/Kg)	REC #	REC
Napthalene	167	0	76	46	30-140
Acenaphthylene	167	0	82	49	30-140
Acenaphthene	167	0	96	57	31-137
Fluorene	167	0	86	51	30-140
Phenanthrene	167	0	91	54	30-140
Anthracene	167	0	103	62	30-140
Fluoranthene	167	0	114	. 68	30-140
Pyrene	167	0	114	68	35-142
Benzo(a)anthracene	167	0	121	73	30-140
Chrysene	167	0	123	74	30-140
Benzo(b)fluoranthene	167	0	116	70	30-140
Benzo(k)fluoranthene	167	0	135	81	30-140
Benzo(a)pyrene	167	0	132	79	30-140
Ideno(1,2,3-cd)pyrene	167	0	162	97	30-140
Dibenz(a,h)anthrancene	167	0	152	91	30-140
Benzo(g,h,i) perylene	167	0	190	114	30-140

# Column to be used to fl * Values outside of QC lir	ag recovery with an asterisk nits		
Spike Recovery:	0 out of 16 outside limits		
COMMENTS:		1	

OLM03.0

4B

SEMIVOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO	EPA	SA	MPI	_E	NC
---------------	-----	----	-----	----	----

Lab Name:	STAT A	nalysis		Contract:	Burns & McDonr	ell	SBLNK 061801
Lab Code:	702051		Case No.:		SAS No.:	SE	OG No.:
Lab File ID:	0618	30103.D			Lab Sample	e ID:	SBLNK 061801
Instrument IC	SVO	C-3			Date Extra	cted:	5/8/2001
Matrix: (soil/v	vater)	SOIL			Date Analy:	zed:	6/18/2001
Level: (low/n	ned)	LOW			Time Analy	zed:	13:02

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	EPA	LAB	LAB	DATE
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	SLCS 061801	SLCS 061801	06180104.D	6/18/2001
02	RPM-SB070-001	918744	06180116.D	6/18/2001
03	RPM-SB071-001	918745	06180117.D	6/18/2001
04	RPM-SB083-001	918746	06180118.D	6/18/2001

COMMENTS

3 C SOIL POLYNUCLEAR AROMATIC LABORATORY CONTROL SAMPLE RECOVERY

Lab Name:	STAT Analy	sis Corporation	Contract:	Burns & McDonnell
Lab Code:	702051	Case No.:	SAS No.:	SDG No.:
LCS - Sample ID:		SLCS 061801	-	

Compound	SPIKE ADDED (ug/Kg)	SAMPLE CONCENTRATION (ug/Kg)	MS CONCENTRATION (ug/Kg)	MS % REC #	QC LIMITS REC
Napthalene	167	0	71	43	30-140
Acenaphthylene	167	0	86	51	30-140
Acenaphthene	167	0	76	46	31-137
Fluorene	167	0	74	45	30-140
Phenanthrene	167	0	68	40	30-140
Anthracene	167	0	82	49	30-140
Fluoranthene	167	0	85	51	30-140
Pyrene	167	0	85	51	35-142
Benzo(a)anthracene	167	0	89	53	30-140
Chrysene	167	0	89	53	30-140
Benzo(b)fluoranthene	167	0	95	57	30-140
Benzo(k)fluoranthene	167	0	75	45	30-140
Benzo(a)pyrene	167	0	→ 60	36	30-140
Ideno(1,2,3-cd)pyrene	167	0	50	30	30-140
Dibenz(a,h)anthrancene	167	0	53	32	30-140
Benzo(g,h,i) perylene	167	0	45	27 *	30-140

# Column to be used to	liag recovery with an asterisk		
* Values outside of QC	limits		
Spike Recovery:	1 out of 16 outside limits		
COMMENTS:			

page 1 of 1

FORM III, SV-2

OLM03.0

4A VOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.

Lab Name:	STAT Analysis	5	Contract:		VBLK062001
Lab Code:	702051	Case No.:	SAS No.:	SDG N	lo.:
_ab File ID:	06200103.	D	Lab Samp	ole ID: <u>VBL</u>	K062001
Date Analyze	d: <u>06/20/01</u>		Time Ana	lyzed: <u>08:2</u>	3
GC Column:	RTX502. ID	0.25 (mm)	Heated F	Purge: (Y/N)	<u> </u>
nstrument ID): VOC-1				

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

ſ	EPA	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	VLCS062001	VLCS062001	06200104.D	08:54
02	RPM-SB070-001	918744 B&M 702051	06200113.D	14:05
03	RPM-SB071-001	918745 B&M 702051	06200114.D	14:40
04	RPM-SB083-001	918746 B&M 702051	06200115.D	15:15
05	RPM-SB083-002	918747 B&M 702051	06200116.D	15:50

COMMENTS

3C SOIL VOLATILE LABORATORY CONTROL SAMPLE RECOVERY

Lab Name: STAT Analysis Corporation

Contract

Lab Code: 7 0205/

Case No.:

SAS No.:

SDG No.:

LCS Sample ID:

VLCS062001

	Spike	Blank	LCS	LCS	Pagever
	Added	Concentration	Concentration	Percent	Recovery
Compound	daq	dad	ppb		# QC Limits
Dichlorodifluoromethane	50	0	44	89	75 - 115
Chloromethane	50	0	43	85	59 - 160
Vinyl chloride	50	0	48	96	54 - 105
Bromomethane	50	0	45	91	50 - 160
Chloroethane	50	0	42	84	61 - 124
Trichlorofluoromethane	5.0	0	48	96	76 - 116
Acetone	50	0	37	75	50 - 141
1,1-Dichloroethene	50	0	39	78	62 - 99
Methylene chloride	50	0	44	89	70 - 119
Acrylonitrile	50	0	43	85	70 - 108
trans-1,2-Dichloroethene	50	0	43	86	70 - 111
1.1-Dichloroethane	50	0	43	87	73 - 113
2-Butanone (MEK)	50	0	43	87	53 - 118
2,2-Dichloropropane	50	0	43	86	68 - 104
cis-1,2-Dichloroethene	50	0	52	103	73 - 117
Chloroform	50	0 -	42	84	69 - 102
Bromochloromethane	50	0	45	89	75 - 111
1,1,1-Trichloroethane	50	0	44	88	71 - 105
1.1-Dichloropropene	50	0	48	95	84 - 119
Carbon tetrachloride	50	0	43	85	69 - 104
1.2-Dichloroethane	50	0	45	90	70 - 108
Benzene	50	0	48	96	74 - 115
Trichloroethene	50	0	43	87	63 - 98
1.2-Dichloropropane	50	0	46	91	67 - 106
Bromodichloromethane	50	0	44	88	70 - 109
Dibromomethane	50	0	46	91	72 - 117
4-Methyl-2-pentanone (MIBK)	50	0	47	93	65 - 107
cis-1,3-Dichloropropene	50	0	41	82	62 - 99
Toluene	50	0	47	94	74 - 115
rans-1,3-Dichloropropene	50	0	38	75	56 - 91
2-Hexanone	50	0	48	95	74 - 121
1,1,2-Trichloroethane	50	0	46	93	71 - 116
1,3-Dichloropropane	50	0	49	98	75 - 119
Tetrachloroethene	50	0	44	89	71 - 113
Dibromochloromethane	50	0	41	83	65 - 113

1.2-Dibromoethane	50	0	46	91	67 - 124
Chlorobenzene	50	0	46	92	73 - 116
Ethylbenzene	50	0	47	94	74 - 114
1,1,1,2-Tetrachloroethane	50	0	45	89	73 - 119
m&p-Xylene	50	0	92	92	71 - 111
o-Xylene	50	0	47	93	76 - 115
Styrene	50	0	46	92	75 - 114
Isopropylbenzene	50	0	47	94	75 - 112
Bromoform	50	0	37	75	62 - 109
1,1,2,2-Tetrachloroethane	50	0	45	89	63 - 109
1,2,3-Trichloropropane	50	0	45	90	71 - 118
n-Propylbenzene	50	0	51	101	73 - 109
Bromobenzene	50	. 0	44	89	73 - 111
1,3,5-Trimethylbenzene	50	0	51	101	75 - 109
2-Chlorotoluene	50	0	46	93	76 - 111
4-Chlorotoluene	50	0	46	92	74 - 109
tert-Butylbenzene	50	0	50	101	72 - 108
1,2,4-Trimethylbenzene	- 50	0	51	102	75 - 109
1,3-Dichlorobenzene	50	0	45	91	74 - 112
1,4-Dichlorobenzene	50	0	46	92	68 - 109
sec-Butylbenzene	50	0	66	132	84 - 138
p-isopropyltoluene	50	0	53	105	70 - 114
n-Butylbenzene	50	0	49	98	68 - 111
1,2-Dichlorobenzene	50	0	47	93	73 - 120
1.2-Dibromo-3-chloropropane	50	0	47	93	69 - 118
Naphthalene	50	0	51	102	70 - 118
Hexachlorobutadiene	50	0	48	. 96	58 - 105
1,2,4-Trichlorobenzene	50	0	52	104	68 - 108
1,2,3-Trichlorobenzene	.50	0	52	105	70 - 130

[#] Column to be used to flag recovery values with an asterisk
* Values outside of QC limits

Spike Recovery	0 of 64 are out of control
Comments	

3С SOIL VOLATILE LABORATORY CONTROL SAMPLE RECOVERY

Lab Name: STAT Analysis Corporation

Contract

Lab Code: 70205] Case No.:

SAS No.:

SDG No.:

LCS Sample ID:

VLCS062101

	Spike	Blank	LCS	LCS	
	Added	Concentration	Concentration	Percent	Recovery
Compound	ppb	ppb	ppb		# QC Limits
Dichlorodifluoromethane	50	0	49	98	75 - 115
Chloromethane	50	0	48	97	59 - 160
Vinyl chloride	50	0	52	104	54 - 105
Bromomethane	50	0	44	88	50 - 160
Chloroethane	50	0	44	89	61 - 124
Trichlorofluoromethane	50	0	53	107	76 - 116
Acetone	50	0	51	101	50 - 141
1,1-Dichloroethene	50	0	41	83	62 - 99
Methylene chloride	50	0	47	94	70 - 119
Acrylonitrile	50	0	48	97	70 - 108
trans-1,2-Dichloroethene	50	0	45	91	70 - 111
1.1-Dichloroethane	50	0	47	94	73 - 113
2-Butanone (MEK)	50	0	49	99	53 - 118
2.2-Dichloropropane	50	0	46	93	68 - 104
cis-1,2-Dichloroethene	50	0	54	109	73 - 117
Chloroform	50	0	45	91	69 - 102
Bromochloromethane	50	0	45	91	75 - 111
1,1,1-Trichloroethane	50	0	47	94	71 - 105
1,1-Dichloropropene	50	0	50	101	84 - 119
Carbon tetrachloride	50	0 '	46	92	69 - 104
1.2-Dichloroethane	50	0	49	98	70 - 108
Benzene	50	0	51	102	74 - 115
Trichloroethene	50 .	0	46	92	63 - 98
1.2-Dichloropropane	50	0	48	95	67 - 106
Bromodichloromethane	50	0	48	95	70 - 109
Dibromomethane	50	0	48	97	72 - 117
4-Methyl-2-pentanone (MIBK)	50	0	52-	104	65 - 107
cis-1,3-Dichloropropene	50	0	43	85	62 - 99
Toluene	50	0	50	101	74 - 115
trans-1,3-Dichloropropene	50	0	40	80	56 - 91
2-Hexanone	50	0	55	110	74 - 121
1,1,2-Trichloroethane	50	0	49	98	71 - 116
1,3-Dichloropropane	50	0	52	104	75 - 119
Tetrachloroethene	50	0	47	93	71 - 113
Dibromochloromethane	50	0	44	88	. 65 - 113

			50	99	67 - 124
1,2-Dibromoethane	50	0		99	73 - 116
Chlorobenzene	50	0	47	98	74 - 114
Ethylbenzene '	50	0	49		73 - 119
1,1,1,2-Tetrachloroethane	50	0	45	90	
m&p-Xylene	50	0	95	95	71 - 111
o-Xylene	50	0	48	95	76 - 115
Styrene	50	0	47	94	75 - 114
Isopropylbenzene	50	0	49	98	75 - 112
Bromoform	50	0	39	77	. 62 - 109
1,1,2,2-Tetrachloroethane	. 50	0	47	94	63 - 109
1,2,3-Trichloropropane	50	0	48	96	71 - 118
n-Propylbenzene	50°	0	53	105	73 - 109
Bromobenzene	50	0	46	91	73 - 111
1,3,5-Trimethylbenzene	50	0	52	105	75 - 109
2-Chlorotoluene	50	0	. 49	98	76 - 111
4-Chlorotoluene	50	0	48	96	74 - 109
tert-Butylbenzene	50	0	52	105	72 - 108
1,2,4-Trimethylbenzene	50	0	53	105	75 - 109
1,3-Dichlorobenzene	50	0	47	94	74 - 112
1,4-Dichlorobenzene	50	0	46	92	68 - 109
sec-Butylbenzene	50	0 -	66	133	84 - 138
p-Isopropyltoluene	50	0	53	105	70 - 114
n-Butylbenzene	50	0	49	98	68 - 111
1.2-Dichlorobenzene	50	0	47	95	73 - 120
1,2-Dibromo-3-chloropropane	50	0	51	102	69 - 118
Naphthalene	50	0	51	103	70 - 118
Hexachlorobutadiene	50	0	48	97	58 - 105
1.2.4-Trichlorobenzene	50	0	49	99	68 - 108
1.2.3-Trichlorobenzene	50	0	51	102	70 - 130

Column to be used to flag recovery values with an asterisk
* Values outside of QC limits

Spike Recovery	0 of 64 are out of control
Comments:	

: C:\HPCHEM\1\DATA\050201A\5035.M (Chemstation Integrator) Method

: Method 8260 Title

Last Update : Fri Apr 27 06:53:02 2001 Response via : Initial Calibration

Non-Spiked Sample: 05020103.D

Spike Spike

Duplicate Sample Sample

| 05020104.D File ID: 05020104.D VLCS050201a

Sample : VLCS050201a Acq Time: 3 May 2001 12:15 am 3 May 2001 12:15 am

: C:\HPCHEM\1\DATA\050301A\5035.M (Chemstation Integrator) Method

: Method 8260 Title

Last Update : Fri Apr 27 06:53:02 2001 Response via : Initial Calibration

Non-Spiked Sample: 05030103.D

Spike Spike

Duplicate Sample Sample

05030104.D File ID: 05030104.D sample : VLCS050201a

VLCS050201a 4 May 2001 12:54 am 4 May 2001 12:54 am Acq Time:

Acq Time: 4 May 20		. 54 aiii							
Compound	Sample Conc	Spike Added	Spike Res	Dup Res	Spike %Rec	Dup %Rec	RPD	QC RPD	Limits % Rec
Dichlorodifluorometh Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene Methylene chloride trans-1,2-Dichloroethane 2,2-Dichloropropane Cis-1,2-Dichloroethane 1,1-Trichloroethane 1,1-Trichloroethane 1,1-Dichloropropene Carbon tetrachloride 1,2-Dichloropropane Bromochloromethane 1,2-Dichloropropane Bromodichloromethane Trichloroethene 1,2-Dichloropropane Bromodichloromethane Toluene 1,1,2-Trichloroethan 1,3-Dichloropropane Tetrachloroethene Dibromomethane Toluene 1,1,2-Trichloroethane 1,2-Dibromoethane Chlorobenzene Ethylbenzene 1,1,1,2-Tetrachloroe m&p-Xylene Oxylene Styrene Isopropylbenzene Bromoform 1,1,2,2-Tetrachloroe 1,2,3-Trichloropropa n-Propylbenzene Bromobenzene 1,3,5-Trimethylbenze 2-Chlorotoluene 4-Chlorotoluene tert-Butylbenzene 1,3,5-Trimethylbenze 2-Chlorotoluene tert-Butylbenzene 1,3,0-Trimethylbenze 2-Chlorotoluene tert-Butylbenzene 1,3-Dichlorobenzene 1,3-Trichlorobenzene 1,3-Trichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Trichlorobenzene	0.077000000000000000000000000000000000	50000000000000000000000000000000000000	9323883765756366348561461579161238231027090218197100213388 5555555555555555555555555555555555	932383765756366348561461579161238231027090218197100213388 575556455555555655545555555555555555555	118 146 104 107 117 126 110 1100 1	118 146 146 192 117 119 1110 1110 1110 1110 1110 1110 1	000000000000000000000000000000000000000	2555554	50-150 50-150

Method : H:\MSDCHEM\1\DATA\050301\5035.M (Chemstation Integrator)

Title : Method 8260
Last Update : Wed May 02 12:39:56 2001
Response via : Initial Calibration

Non-Spiked Sample: 05020103.D

Spike Spike

Duplicate Sample sample

File ID: 05030104.D Sample: VLCS050301 Acq Time: 3 May 2001 12:59 pm 05030104.D VLCS050301

3 May 2001 12:59 pm

Compound	Sample Conc	Spike Added	Spike Res	Dup Res	Spike %Rec	Dup %Rec	RPD	QC RPD	Limits % Rec
Dichlorodifluorometh	0.0	50	71	71	141	141	0	25	50-150
Chloromethane	0.0	50	93	93	185#		0	25	50-150
Vinyl chloride	0.0	50	68	68	137	137	0	25	50-150
Bromomethane	2.6	50	69	69	132	132	0	25	50-150
Chloroethane	0.0	50	70	70	139	139	0	25	50-150
Trichlorofluorometha	0.0	50	67	67	134	134	0	25	50-150
1,1-Dichloroethene	0.0	50	45	45	89	89	0	14	61-145
Methylene chloride	0.0	50	53	53	106	106	0	25	50-150
trans-1,2-Dichloroet	0.0	50	46	46	93	93	0	25	50-150
1,1-Dichloroethane	0.0	50	48	48	96	96	0	25	50-150
2,2-Dichloropropane	0.0	50	32	. 32	65	65	0	25	50-150
cis-1,2-Dichloroethe	0.0	50	46	46	93	93	0	25	50-150
Chloroform	0.0	50	45	45	90	90	0	25	50-150
Bromochloromethane	0.0	50	47	47	94	94	0	25	50-150
1,1,1-Trichloroethan		50	46	46	92	92	0	2.5	50-150
1,1-Dichloropropene	0.0	50	56	56	113	113	0	25	50-150
Carbon tetrachloride		50	44	44	88	88	0	25	50-150
1,2-Dichloroethane	0.0	50	49	49	98	98	0	25	50-150
Benzene	0.0	50	47	47	93	93 79	0	11 14	76-127 71-120
Trichloroethene	0.0	50	39 43	39 43	79 86	86	0	25	50-150
1,2-Dichloropropane	0.0	50 50	44	44	89	89	Ö	25	50-150
Bromodichloromethane Dibromomethane	0.0 0.0	50	47	47	94	94	Ö	25	50-150
Toluene	0.0	50	47	47	93	93	Ö	13	76-125
1,1,2-Trichloroethan		50	46	46	92	92	ŏ	25	50-150
1,3-Dichloropropane	1.3	50	48	48	94	94	ŏ	25	50-150
Tetrachloroethene	0.0	50	44	44	88	88	Ŏ	25	50-150
Dibromochloromethane	0.0	50	40	40	80	80	Ō	25	50-150
1,2-Dibromoethane	0.0	50	46	46	93	93	0	25	50-150
Chlorobenzene	0.3	50	45	45	90	90	0	13	75-130
Ethylbenzene	0.4	50	46	46	91	91	0	25	50-150
1,1,1,2-Tetrachloroe		50	42	42	84	84	0	25	50-150
m&p-Xylene	0.5	100	91	91	90	90	0	25	50-150
o-Xylene	0.0	50	49	49	97	97	0	25	50-150
Styrene	0.3	50	47	47	92	92	0	25	50-150
Isopropylbenzene	0.3	50	48	48	96	96	0	25	50-150
Bromoform	0.0	50	40	40	80	80	0	25 25	50-150 50-150
1,1,2,2-Tetrachloroe		50 50	46	46 48	89 96	89 96	0	25	50-150
1,2,3-Trichloropropa n-Propylbenzene	0.0	50	48 49	49	97	97	ő	25	50-150
Bromobenzene	0.0	50	45	45	90	90	ŏ	25	50-150
1,3,5-Trimethylbenze	0.6	50	48	48	96	96	ŏ	25	50-150
2-Chlorotoluene	0.7	50	49	49	96	96	ŏ	25	50-150
4-Chlorotoluene	0.7	50	49	49	96	96	Ŏ	25	50-150
tert-Butylbenzene	0.8	50	49	49	96	96	0	25	50-150
1,2,4-Trimethylbenze		50	48	48	95	95	0	25	50-150
1,3-Dichlorobenzene	1.7	50	48	48	93	93	0	25	50-150
1,4-Dichlorobenzene	1.7	50	43	43	83	83	0	25	50-150
sec-Butylbenzene	0.7	50	61	61	120	120	0	25	50-150
p-Isopropyltoluene	0.9	50	49	49	97	97	0	25	50-150
n-Butylbenzene	1.4	50	50	50	- 98	98	0	25	50-150
1,2-Dichlorobenzene	2.1	50	48	48	92	92	0	25	50-150
1,2-Dibromo-3-chloro	18.9	50	49	49	59	59	0	25	50-150
Naphthalene	2.5	50	44	44	82	82	0	25	50-150
Hexachlorobutadiene	4.3	50	44	44	79	79	0	25 25	50-150 50-150
1,2,4-Trichlorobenze	8.5	50	44	44	70	70	U	40	JO-TJ0

Spike Recovery and RPD Summary Report - SOIL

: H:\MSDCHEM\1\DATA\050401\5035.M (Chemstation Integrator) Method

Title : Method 8260
Last Update : Wed May 02 12:39:56 2001
Response via : Initial Calibration

Non-Spiked Sample: 05040103.D

Spike Spike

Duplicate Sample sample

File ID: 05040104.D Sample: VLCS050401 Acq Time: 4 May 2001 8:37 am 05040104.D VLCS050401

4 May 2001 8:37 am

Compound	Sample Conc	Spike Added	Spike Res	Dup Res	Spike %Rec	Dup %Rec	RPD	QC RPD	Limits % Rec
Dichlorodifluorometh	0.0	50	81	81	162#	162#	0	25	50-150
Chloromethane	0.0	50	107	107	21.4#	214#	0	25	50-150
Vinyl chloride	0.0	50	74	74	148	148	ĺÔ	25	50-150
Bromomethane	2.6	50	118	118	231#	231#	0	25	50-150
Chloroethane	0.0	50	86	86	171#	171#	Ō	25	50-150
Trichlorofluorometha		50	81	81	1.62#	162#	Ō	25	50-150
1,1-Dichloroethene	0.0	50	49	49	99	99	0	22	59-172
Methylene chloride	0.0	50	55	55	109	109	0	25	50-150
trans-1,2-Dichloroet	0.0	50	49	49	97	97	0	25	50-150
1,1-Dichloroethane	0.0	50	53	53	105	105	0	25	50-150
2,2-Dichloropropane	0.0	50	56	56	111	111	0	25	50-150
cis-1,2-Dichloroethe		50	50	50	99	99	. 0	25	50-150
Chloroform	0.0	50	48	48	96	96	0	25	50-150
Bromochloromethane	0.0	50	49	49	99	99	0	25	50-150
1,1,1-Trichloroethan		50	47	47	94	94	0	25	50-150
1,1-Dichloropropene	0.0	50	61	61	121	121	0	25	50-150
Carbon tetrachloride	0.0	50	41	41	83	83	0	25	50-150
1,2-Dichloroethane	0.0	50	54	54	108	108	0	25	50-150
Benzene	0.0	50	50	50	99	99	0	21	66-142 62-137
Trichloroethene	0.0	50	43	43	86	86	0	24 25	50-150
1,2-Dichloropropane	0.0	50	47	47 46	93	93	0	25	50-150
Bromodichloromethane		50	46	46 50	92 100	92 100	0	25	50-150
Dibromomethane	0.0	50 50	50 51	50 51	100	101	0	21	59-139
Toluene 1,1,2-Trichloroethan	0.2	50	48	48	96	96	ŏ	25	50-150
1,3-Dichloropropane	0.0	50	53	53	106	106	ŏ	25	50-150
Tetrachloroethene	0.0	50	46	46	93	93	ŏ	25	50-150
Dibromochloromethane	0.0	50	40	40	79	79	ŏ	25	50-150
1,2-Dibromoethane	0.0	50	49	49	98	98	0	25	50-150
Chlorobenzene	0.4	50	48	48	95	95	0	21	60-133
Ethylbenzene	0.3	50	50	50	100	100 İ	0	25	50-150
1,1,1,2-Tetrachloroe		50	41	41	83	83 İ	0	25	50-150
m&p-Xylene	0.0	100	100	100	100	100	0	25	50-150
o-xylene	0.0	50	52	52	104	104	0	25	50-150
Styrene	0.0	50	51	51	101	101	0	25	50-150
Isopropylbenzene	0.3	50	53	53	106	106	0	25	50-150
Bromoform	0.0	50	39	39	77	-77	0	25	50-150
1,1,2,2-Tetrachloroe		50	49	49	94	94	0	25.	50-150
1,2,3-Trichloropropa		50	50	50	100	100	0	25 25	50-150 50-150
n-Propylbenzene	0.4	50	54 49	54 49	108	108 99	0 0	25	50-150
Bromobenzene	0.0	50 50	54	54	106	106	Ö	25	50-150
1,3,5-Trimethylbenze 2-Chlorotoluene	0.0	50	55	55	109	109	Ő	25	50-150
4-Chlorotoluene	0.0	50	55	55	109	109	Ŏ	25	50-150
tert-Butylbenzene	0.8	50	55	. 55	109	109	ŏ	25	50-150
1,2,4-Trimethylbenze	0.8	50	54	54	107	107	ŏ	25	50-150
1,3-Dichlorobenzene	0.0	50	54	54	108	108	Ŏ	25	50-150
1,4-Dichlorobenzene	1.5	50	47	47	91	91	Ō	25	50-150
sec-Butylbenzene	0.6	50	64	64	127	127	0	25	50-150
p-Isopropyltoluene	0.8	50	53	53	103	103 j	0	25	50-150
n-Butylbenzene	1.2	50	56	56	110	110	0	. 25	50-150
1,2-Dichlorobenzene	2.0	50	52	52	101	101	0	25	50-150
1,2-Dibromo-3-chloro	0.0	50	54	54	108	108	0	25	50-150
Naphthalene	4.4	50	55	55	100	100	0	25	50-150
Hexachlorobutadiene	4.8	50	53	53	95	95	0	25	50-150
1.2.4-Trichlorobenze	8.9	50	53	53	88	88	0	25	50-150

: C:\HPCHEM\1\DATA\050401\5035.M (Chemstation Integrator) Method

Title : Method 8260
Last Update : Fri Apr 27 06:53:02 2001
Response via : Initial Calibration

Non-Spiked Sample: 05040103.D

Spike Spike

Duplicate Sample sample

| 05040104.D File ID: 05040104.D Sample : VLCS050401

| VLCS050401 | 4 May 2001 12:58 pm 4 May 2001 12:58 pm Acq Time:

Acq Ilme: 4 May 20		:28 bw				ay 200 		. 36 pi	
Compound	Sample Conc	Spike Added	Spike Res	Dup Res	Spike %Rec	Dup %Rec	RPD	QC RPD	Limits % Rec
Dichlorodifluorometh Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluorometha 1,1-Dichloroethene Methylene chloride trans-1,2-Dichloroet 1,1-Dichloropropane Cis-1,2-Dichloroethe Chloroform Bromochloromethane 1,1,1-Trichloroethan 1,1-Dichloropropene Carbon tetrachloride 1,2-Dichloropropane Bromodichloromethane Trichloroethene 1,2-Dichloropropane Bromodichloromethane Dibromomethane Toluene 1,1,2-Trichloroethan 1,3-Dichloropropane Tetrachloroethene Dibromochloromethane Chlorobenzene Ethylbenzene 1,1,1,2-Tetrachloroe m&p-Xylene O-Xylene Styrene Isopropylbenzene Bromoform 1,1,2,2-Tetrachloroe 1,2,3-Trichloropropa n-Propylbenzene Bromoform 1,2,2-Tetrachloroe 1,2,3-Trimethylbenze 2-Chlorotoluene 4-Chlorotoluene 4-Chlorotoluene 4-Chlorotoluene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,2-Dichlorobenzene	0.010000000000000000000000000000000000	50000000000000000000000000000000000000	575 575 575 575 575 575 575 575 575 575	56435643041001363890611501277559554444544932999933227 5643563304100136389061150127755955444454444444343345433	115 130 998 1127 1008 1029 1107 101 1027 101 1027 101 1027 101 1027 1027	115 130983 1127760082911098021119891033340101111989103334011111111111111111111111111111111	000000000000000000000000000000000000000	25555555555555555555555555555555555555	50-150 5

Method : C:\HPCHEM\1\DATA\050501\5035.M (Chemstation Integrator)
Title : Method 8260
Last Update : Fri Apr 27 06:53:02 2001
Response via : Initial Calibration

Non-Spiked Sample: 05050103.D

Spike Spike Duplicate Sample Sample

05050104.D File ID : 05050104.D VLCS050501 Sample : VLCS050501

5 May 2001 8:37 pm 5 May 2001 8:37 pm Acq Time:

Compound	Sample Conc	Spike Added	Spike Res	Dup Res	Spike %Rec	Dup %Rec	RPD	QC RPD	Limits % Rec
Dichlorodifluorometh	0.0	50	70	70	141	141	0	25	50-150
Chloromethane	0.0	50	80	80	160#	160#		25	50-150
Vinyl chloride	0.0	50	59	59	119	119	i ŏ	25	50-150
Bromomethane	0.0	50	43	43	85	85	İÕ	25	50-150
Chloroethane	0.0	50	-69	69	137	137	Ö	25	50-150
Trichlorofluorometha		50	74	74	149	149	Ŏ	25	50-150
1,1-Dichloroethene	0.0	50	54	5.4	107	107	Ŏ	14	61-145
Methylene chloride	0.0	50	63	63	125	125	Ö	25	50-150
trans-1.2-Dichloroet		50	55	55	109	109	Ō	25	50-150
1,1-Dichloroethane	0.0	50	63	63	125	125	0	25	50-150
2,2-Dichloropropane	0.0	50	60	60	119	119	0	25	50-150
cis-1,2-Dichloroethe		50	61	61	122	122	0	25	50-150
Chloroform	0.0	50	58	58	116	116	0	25	50-150
Bromochloromethane	0.0	50	62	62	124	124	0	25	50-150
1,1,1-Trichloroethan		50	62	62	124	124	0	25	50-150
1,1-Dichloropropene	0.0	50	69	69	138	138	0	25	50-150
Carbon tetrachloride		50	61	61	121	121	0	25	50-150
1,2-Dichloroethane	0.0	50	64	64	128	128	0	25	50-150
Benzene	0.0	50	61	61	123	123	. 0	11	76-127
Trichloroethene	0.0	50	50	50	100	100	0	1.4	71-120
1,2-Dichloropropane	0.0	50	56	56	113	113	0	25	50-150
Bromodichloromethane		50	59	59	119	119	-0	25	50-150
Dibromomethane	0.0	50	62	62	123	123	Ŏ	25	50-150
Toluene	0.0	50	54	54	107	107	0	13	76-125
1,1,2-Trichloroethan	0.0	50	60	60	120	120	0	25	50-150
1,3-Dichloropropane	0.0	50	63	63	126	126	0	25	50-150 50-150
Tetrachloroethene	0.0	50	49	49	99	99 111	0 0	25	50-150
Dibromochloromethane		50	55	55 58	111 116	116	0	25	50-150
1,2-Dibromoethane	0.0	50	58 52	52	104	104	Ö	13	75-130
Chlorobenzene	0.0	50 50	50	50	101	101	ŏ	25	50-150
Ethylbenzene 1,1,1,2-Tetrachloroe		50	56	56	112	112	ŏ	25	50-150
m&p-Xylene	0.0	100	94	94	94	94	ŏ	25	50-150
o-Xylene	0.0	50	51	51	102	102	Ö	25	50-150
Styrene	0.0	50	51	51	102	102	Õ	25	50-150
Isopropylbenzene	0.0	50	48	48	97	97	0	25	50-150
Bromoform	0.0	50	53	53	107	107	.0	25	50-150
1,1,2,2-Tetrachloroe		50	55	55	110	110	0	25	50-150
1,2,3-Trichloropropa		50 j	60	60	121	121	0	25	50-150
n-Propylbenzene	0.0	50	44	44	89	89	Ò	25	50-150
Bromobenzene	0.0	50	48	48	97	97	0	25	50-150
1,3,5-Trimethylbenze	0.0	50	45	45	91	91	0	25	50-150
2-Chlorotoluene	0.2	50	48	48	96	96	0	25	50-150
4-Chlorotoluene	0.0	50	46	46	92	92	0	25	50-150
tert-Butylbenzene	0.0	50	41	41	82	82	0	25	50-150
1,2,4-Trimethylbenze		50	45	45	91	91	0	25	50-150
1,3-Dichlorobenzene	0.0	50	46	46	91	91	0	25 25	50-150
1,4-Dichlorobenzene	0.0	50	42	42 54	85	85	0	25	50-150 50-150
sec-Butylbenzene	0.0	50	54	54	108	108 85	0	25	50-150
p-Isopropyltoluene	0.0	50	43	43 40	85 81	81	0	25	50-150
n-Butylbenzene	0.0	50 50	40 49	40	99	99	Ö	25	50-150
1,2-Dichlorobenzene	0.0 0.0	50	63	63	126	126	ŏ	25	50-150
1,2-Dibromo-3-chloro Naphthalene	4.4	50	53	53	97	97	ŏ	25	50-150
Hexachlorobutadiene	0.0	50	33	33	65	65	ŏ	25	50-150
1,2,4-Trichlorobenze		50	43	43	87	87	ŏ	25	50-150
T,Z,T II ICHTOTODCHZE	, 0.0 (30 1	۱ ر		, , ,	٠. ا	-	: ==	امكت مد

: C:\HPCHEM\1\DATA\050601\5035.M (Chemstation Integrator) Method

Title : Method 8260
Last Update : Fri Apr 27 06:53:02 2001
Response via : Initial Calibration

Non-Spiked Sample: 05060103.D

Spike Spike

Duplicate Sample sample

File ID: 05060104.D Sample: VLCS050601 Acq Time: 6 May 2001 05060104.D VLCS050601

6 May 2001 3:29 pm 3:29 pm

and the contract of the contra								<u>-</u>	
Compound	Sample Conc	Spike Added	Spike Res	Dup Res	Spike %Rec	Dup %Rec	RPD	QC RPD	Limits % Rec
Dichlorodifluorometh		50	64	64	127	127	0	25	50-150
Chloromethane	0.0	50	78	78	157#	157#		25	50-150
Vinyl chloride	0.0	50	58	58	116	116	0	25	50-150
Bromomethane	4.0	50	38	38	68	68	0	25	50-150
Chloroethane	0.0	50	67	67	134	134 146	0	25	50-150 50-150
Trichlorofluorometha		50	73 53	73 53	14 <u>6</u> 106	106	0	14	61-145
1,1-Dichloroethene	0.0	50 50	61	61	121	121	0	25	50-150
Methylene chloride trans-1,2-Dichloroet		50	61	61	121	121	Ŏ	25	50-150
1,1-Dichloroethane	0.0	50	62	62	123	123	İŏ	25	50-150
2,2-Dichloropropane	0.0	50	61	61	122	122	Ö	25	50-150
cis-1,2-Dichloroethe		50	62	62	123	123	0	25	50-150
Chloroform	0.0	50	58	58	117	117	0	25	50-150
Bromochloromethane	0.0	50	61	61	122	122	0	25	50-150
1,1,1-Trichloroethar	0.0	50	63	63	127	127	0	25	50-150
1,1-Dichloropropene	0.0	50	72	72	143	143	0	25	50-150 50-150
Carbon tetrachloride		50	63 63	63 63	126 126	126 126	0	25	50-150
1,2-Dichloroethane	0.0	50 50	62	62	124	124	ŏ	11	76-127
Benzene Trichloroethene	0.0	50	52	52	104	104	ŏ	14	71-120
1,2-Dichloropropane	0.0	50	56	56	112	112	ŏ	25	50-150
Bromodichloromethane		50	60	60	120	120	Ŏ	25	50-150
Dibromomethane	0.0	50	60	60	120	120	0	25	50-150
Toluene	0.0	50	59	59	119	119	0	13	76-125
1,1,2-Trichloroethar	0.0	50	58	58	117	117	0	25	50-150
1,3-Dichloropropane	0.0	50	62	62	124	124	0	25	50-150
Tetrachloroethene	0.0	50	58	58	116	116	0	25	50-150
Dibromochloromethane		50	56	56 58	112 116	112 116	0	25 25	50-150 50-150
1,2-Dibromoethane	0.0	50 50	58 60	60	110	119	0	13	75-130
Chlorobenzene Ethylbenzene	0.0	50	61	61	122	122	ŏ	25	50-150
1,1,1,2-Tetrachloroe		50	60	60	120	120	ŏ	25	50-150
m&p-Xylene	0.0	100	115	115	115	115	Ō	25	50-150
o-Xylene	0.0	50	61	61	122	122	0	25	50-150
Styrene	0.0	50	60	60	121	121	0	25	50-150
Isopropylbenzene	0.0	50	61	61	123	123	0	25	50-150
Bromoform	0.0	50	52	52	104	104	0	25	50-150 50-150
1,1,2,2-Tetrachloroe	0.0	50	53	53 58	106 115	106 115	0	25 25	50-150
1,2,3-Trichloropropa	0.0	50 50	58 61	61	122	122	ŏ	25	50-150
n-Propylbenzene Bromobenzene	0.0	50	57	57	115	115	ŏ	25	50-150
1,3,5-Trimethylbenze		50	61	61	122	122	ŏ	25	50-150
2-Chlorotoluene	0.2	50	62	62	124	124	0	25	50-150
4-Chlorotoluene	0.0	50	62	62	125	125	0	25	50-150
tert-Butylbenzene	0.0	50	61	61	122	122	0	25	50-150
1,2,4-Trimethylbenze		50	62	62	124	124	0	25	50-150
1,3-Dichlorobenzene	0.4	50	61	61	121	121	0	25	50-150 50-150
1,4-Dichlorobenzene	0.4	50	56	56 74	111 149	111 149	0	25 25	50-150
sec-Butylbenzene	0.0	50 50	74 62	62	124	124	Ö	25	50-150
p-Isopropyltoluene n-Butylbenzene	0.0	50	64	64	127	127	ŏ	25	50-150
1,2-Dichlorobenzene	0.0	50	60	60	121	121	ŏ	25	50-150
1,2-Dibromo-3-chloro		50	57	57	114	114	Ö	25	50-150
Naphthalene	3.4	50	57	57	107	107	0	25	50-150
Hexachlorobutadiene	0.0	50	60	60	119	119	0	25	50-150
1,2,4-Trichlorobenze	0.0	50	59	59	119	119	Õ	25	50-150

Method : C:\HPCHEM\1\DATA\051101\5035.M (Chemstation Integrator)

Title : Method 8260

Last Update : Fri Apr 27 06:53:02 2001 Response via : Initial Calibration

Non-Spiked Sample: 05110103.D

Spike Spike Sample Duplicate Sample

File ID : 05110104.D Sample : VLCS051101 | 05110104.D

| VLCS051101 | 11 May 2001 8:05 am Acq Time: 11 May 2001 8:05 am

		- -				-		-	
Compound	Sample Conc	Spike Added	Spike Res	Dup Res	Spike %Rec	Dup %Rec	RPD	QC RPD	Limits % Rec
Dichlorodifluorometh Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluorometha 1,1-Dichloroethene Methylene chloride trans-1,2-Dichloroet 1,1-Dichloroethane 2,2-Dichloropropane cis-1,2-Dichloroethe Chloroform Bromochloromethane 1,1-Trichloroethan 1,1-Dichloropropene Carbon tetrachloride 1,2-Dichloropropane Bromodichloromethane Trichloroethene 1,2-Dichloropropane Bromodichloromethane Toluene 1,1,2-Trichloroethan 1,3-Dichloropropane Tetrachloroethene Dibromomethane Toluene 1,1,2-Trichloroethan 1,2-Dibromoethane Chlorobenzene Ethylbenzene 1,1,1,2-Tetrachloroe m&p-Xylene Styrene Isopropylbenzene Bromoform 1,1,2,2-Tetrachloroe 1,2,3-Trichloropropa n-Propylbenzene Bromoform 1,1,2,2-Tetrachloroe 1,2,3-Trichloropropa n-Propylbenzene Bromobenzene 1,3,5-Trimethylbenze 2-Chlorotoluene 4-Chlorotoluene 4-Chlorotoluene 4-Chlorotoluene 4-Chlorotoluene 4-Chlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	50 50 50 50 50 50 50 50 50 50 50 50 50 5	5291272553735365458673574592264554565914536776763980897 569127255555555555555555555555555555555555	-291272553735365458673574592264554565914536776763980897 -56545645555555555555555555555555555555	105 137 102 73 113 125 90 110 106 114 106 113 110 127 110 117 111 115 107 110 118 109 109 109 109 111 112 108 109 109 111 112 113 110 111 111 112 113 110 111 111 112 110 111 111 112 113 110 111 111 112 110 111 111 111 112 110 111 111 112 110 111 111 111 112 113 110 111 111 111 112 110 111 111 111 112 110 110 111 111 111 112 110 110 111 111 111 111 111 112 110 110 111 111 111 111 111 111 111 111 112 110 110 111 105 137 102 137 103 113 125 106 110 110	000000000000000000000000000000000000000	25 25 25 25 25 25 25 25	50-150 50-150	
1,2,3-Trichloropropa n-Propylbenzene Bromobenzene 1,3,5-Trimethylbenze 2-Chlorotoluene 4-Chlorotoluene tert-Butylbenzene 1,2,4-Trimethylbenze 1,3-Dichlorobenzene 1,4-Dichlorobenzene sec-Butylbenzene p-Isopropyltoluene n-Butylbenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene	0.0 0.1 0.0 0.0 0.0 0.3 0.3 0.0	50 50 50 50 50 50 50 50	54 55 56 57 56 57 56 58 58 58 59	54 55 57 57 57 57 57 57 57 59 50 59	109 110 106 112 115 113 111 106 137 115 120 116 118	109 110 106 112 115 113 111 106 137 115 120 116 118	000000000000000000000000000000000000000	25 25 25 25 25 25 25 25	50-150 50-150 50-150 50-150 50-150 50-150 50-150 50-150 50-150 50-150 50-150 50-150 50-150

Spike Recovery and RPD Summary Report - SOIL

: H:\MSDCHEM\1\DATA\051101\5035.M (Chemstation Integrator) Method

Title : меthod 8260

Last Update : Wed May 09 15:45:24 2001 Response via : Initial Calibration

Non-Spiked Sample: 05110103.D

Spike Spike

Spike Duplicate Sample Sample

File ID: 05110104.D Sample: VLCS051101 Acq Time: 11 May 2001 10:47 am 05110104.D

VLCS051101 11 May 2001 10:47 am

Compound	Sample Conc	Spike Added	Spike Res	Dup Res	Spike %Rec	Dup %Rec	RPD	QC RPD	Limits % Rec
Dichlorodifluorometh	0.0	50	73	73	147	147	0	25	50-150
Chloromethane	1.6	50	127	127	251#	251#	Ŏ	25	50-150
	0.0	50	92	92	183#	183#	Ŏ	25	50-150
Vinyl chloride			.99	99	191#		İŏ	25	50-150
Bromomethane	3.5	50					Ö	25	50-150
Chloroethane	0.0	50	97	97	194#				50-150
Trichlorofluorometha		50	99	99	197#	197#	0	25	
1,1-Dichloroethene	0.0	50	60	60	119	119	0	22	59-172
Methylene chloride	0.0	50	66	66	133	133	0	25	50-150
trans-1,2-Dichloroet	0.0	50	43	43	86	86	0	25	50-150
1,1-Dichloroethane	0.0	50	49	49	98	98	0	25	50-150
2,2-Dichloropropane	0.0	50	50	50	101	101	0	25	50-150
cis-1,2-Dichloroethe	0.0	50	46	46	91	91	0	25	50-150
Chloroform	0.0	50	46	46	91	91	0	25	50-150
Bromochloromethane	0.0	50	45	45	90	90	0	25	50-150
1,1,1-Trichloroethan		50	47	47	94	94	0	25	50-150
1,1-Dichloropropene	0.0	50	54 İ	54	108	108	0	25	50-150
Carbon tetrachloride		50	48	48	95	95	0	25	50-150
1,2-Dichloroethane	0.0	50	51	51	102	102	0	25	50-150
Benzene	0.0	50	47	47	93	93	0	21	66-142
Trichloroethene	6.8	50	40	40	67	67	0	24	62-137
1,2-Dichloropropane	0.0	50	45	45	91	91	Ŏ	25	50-150
Bromodichloromethane		50	48	48	96	96	ŏ	25	50-150
	0.0	50	48	48	96	96	ŏ	25	50-150
Dibromomethane Toluene	0.0	50	46	46	93	93	ŏ	21	59-139
1,1,2-Trichloroethan		50	45	45	90	90	ŏ	25	50-150
	0.0	50	48	48	96	96	ŏ	25	50-150
1,3-Dichloropropane		50	46	46	92	92	Ŏ	25	50-150
Tetrachloroethene	0.0	50	45	45	90	90	Ö	25	50-150
Dibromochloromethane			44	44	88	88	Ö	25	50-150
1,2-Dibromoethane	0.0	50		47	94	94	Ö	21	60-133
Chlorobenzene	0.0	50	47		98	98	Ö	25	50-150
Ethylbenzene	0.0	50	49	49 47		96	0	25	50-150
1,1,1,2-Tetrachloroe	0.0	50	47	47	94				50-150
m&p-Xylene	0.0	100	97	97	97	97	0	25	50-150
o-Xylene	0.0	50	50	50	99	99	0	25	
Styrene	0.0	50	49	49	97	97	0	25	50-150
Isopropylbenzene	0.0	50	52	52	105	105	0	25	50-150 50-150
Bromoform	0.0	50	46	46	92	92	Ŏ	25	
1,1,2,2-Tetrachloroe	0.0	50	45	45	89	89	Ŏ.	25	50-150
1,2,3-Trichloropropa	0.0	50	45	45	90	90	O O	25	50-150
n-Propylbenzene	0.3	50	53	53	105	105	O O	25	50-150
Bromobenzene	0.0	50	47	47	94	94	Ŏ	25	50-150
1,3,5-Trimethylbenze	0.4	50	52	52	102	102	0	25	50-150
2-Chlorotoluene	0.5	50	52	52	103	103	0	25	50-150
4-Chlorotoluene	0.5	50	52	52	103	103	0	25	50-150
tert-Butylbenzene	0.6	50	54	54	107	107	0	25	50-150
1,2,4-Trimethylbenze	0.6	50	53	53	104	104	0	25	50-150
1,3-Dichlorobenzene	0.0	50	53	53	105	105	0	25	50-150
1,4-Dichlorobenzene	1.4	50	43	43	84	84	0	25	50-150
sec-Butylbenzene	0.0	50	59	59	118	118	0	25	50-150
p-Isopropyltoluene	0.6	50	49	49	97	97	0	25	50-150
n-Butylbenzene	0.9	50	51	5.1	101	101	0	25	50-150
1,2-Dichlorobenzene	1.8	50	47	47	91	91	0	25	50-150
1,2-Dibromo-3-chloro	: :	50	50	50	99	99	0	25	50-150
Naphthalene	11.6	50	46	46	70	70	0	25	50-150
Hexachlorobutadiene	4.7	50	48	48	86	86	Ō	25	50-150
1 2 4 Trichlarchenza		50	48	48	77	77 i	Õ	25	50-150

: C:\HPCHEM\1\DATA\051101A\5035.M (Chemstation Integrator) Method

: Method 8260 Title

Last Update : Fri Apr 27 06:53:02 2001 Response via : Initial Calibration

Non-Spiked Sample: 05110103.D

Spike Spike

Sample Duplicate Sample

File ID : 05110104.D | 05110104.D | Sample : VLCS051101a | VLCS051101a | VLCS051101a | Acq Time: 11 May 2001 10:45 pm

Dichlorodifiluoromethane	Compound	Sample Conc	Spike Added	Spike Res	Dup Res	Spike %Rec	Dup %Rec	RPD	QC RPD	Limits % Rec
PSAGCHIDIODHIANIANIANIANIA IN TERESTALIA IN TERESTALIA	Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluorometha 1,1-Dichloroethene Methylene chloride trans-1,2-Dichloroet 1,1-Dichloroethane 2,2-Dichloropropane cis-1,2-Dichloroethe Chloroform Bromochloromethane 1,1,1-Trichloroethan 1,1-Dichloropropene Carbon tetrachloride 1,2-Dichloroethane Benzene Trichloroethene 1,2-Dichloropropane Bromodichloromethane Dibromomethane Toluene 1,1,2-Trichloroethan 1,3-Dichloropropane Tetrachloroethene Dibromochloromethane 1,2-Dibromoethane Chlorobenzene Ethylbenzene 1,1,1,2-Tetrachloroe m&p-Xylene o-Xylene Styrene Isopropylbenzene Bromoform 1,1,2,2-Tetrachloroe 1,2,3-Trichloropropa n-Propylbenzene Bromobenzene 1,3,5-Trimethylbenze 2-Chlorotoluene tert-Butylbenzene 1,3,5-Trimethylbenze 2-Chlorotoluene tert-Butylbenzene 1,3,0-Dichlorobenzene 1,3-Dichlorobenzene 1,2-Dibromo-3-chloro		50 50 50 50 50 50 50 50 50 50 50 50 50 5	549119856565656565656565555555555555555555	-4991198566633354616433067036601012501157019143030609113 5791198565555565656545555555555555554455555555	108	108	000000000000000000000000000000000000000	25 25 25 25 25 25 25 25	50-150 50-150

: C:\HPCHEM\1\DATA\051201\5035.M (Chemstation Integrator) Method

Title : метhod 8260

Last Update : Fri Apr 27 06:53:02 2001 Response via : Initial Calibration

Non-Spiked Sample: 05120103.D

Spike Spike Sample Duplicate Sample

File ID: 05120104.D .
Sample: VLCS051201
Acq Time: 13 May 2001 2:50 am | 05120104.D

VLCS051201

| 13 May 2001 2:50 am

Compound	Sample Conc	Spike Added	Spike Res	Dup Res	Spike %Rec	Dup %Rec	RPD	QC RPD	Limits % Rec
Dichlorodifluorometh Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluorometha 1,1-Dichloroethene Methylene chloride trans-1,2-Dichloroet 1,1-Dichloroethane 2,2-Dichloropropane cis-1,2-Dichloroethan 1,1-Trichloroethan 1,1-Trichloroethan 1,1-Trichloroethan 1,1-Dichloropropane Carbon tetrachloride 1,2-Dichloropropane Bromodichloromethane Benzene Trichloroethene 1,2-Dichloropropane Bromodichloromethane Dibromomethane Toluene 1,1,2-Trichloroethan 1,3-Dichloropropane Tetrachloroethene Dibromochloromethane 1,2-Dibromoethane Chlorobenzene Ethylbenzene 1,1,1,2-Tetrachloroe m&p-xylene Styrene Isopropylbenzene Bromoform 1,1,2,2-Tetrachloroe 1,2,3-Trichloropropa n-Propylbenzene Bromoform 1,2,2-Tetrachloroe 1,3,5-Trimethylbenze 2-Chlorotoluene 4-Chlorotoluene 4-Chlorotoluene 4-Chlorotoluene 4-Chlorotoluene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dibromo-3-chloro Naphthalene Hexachlorobutadiene 1 2 4 Trichlorobutadiene 1 2 4 Trichlorobutadiene 1 2 4 Trichlorobutadiene	0.0	50000000000000000000000000000000000000	5717111278696464048534405493555499013601078308133882037788460	7177112786964640485340554935599513677881338820377884460-	114 143 114 1143 1144 1143 1143 1143 11	114 143 114 114 114 114 115 116 1117 113 118 119 1108 1117 1118 1118 1118 1118 1118 1118	000000000000000000000000000000000000000	2555555555555555514555535555555555555555	50-150 5

Spike Recovery and RPD Summary Report - SOIL

Method

: H:\MSDCHEM\1\DATA\051501\5035.M (Chemstation Integrator)

: Method 8260 Title

Last Update : Wed May 09 15:45:24 2001 Response via : Initial Calibration

Non-Spiked Sample: 05150103.D

Spike sample. Spike Duplicate Sample

File ID : 05150104.D | 05150104.D

VLCS051501 Sample :

VLCS051501 15 May 2001

5:36 pm 15 May 2001 Acq Time:

5:36 pm

Compound	Sample Conc	Spike Added	Spike Res	Dup Res	Spike %Rec	Dup %Rec	RPD	QC RPD	Limits % Rec
Dichlorodifluorometh Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluorometha 1,1-Dichloroethene Methylene chloride trans-1,2-Dichloroet 1,1-Dichloropropane Cis-1,2-Dichloroethene Chloroform Bromochloromethane 1,1-Trichloroethan 1,1-Dichloropropene Carbon tetrachloride 1,2-Dichloroethane Benzene Trichloroethene 1,2-Dichloropropane Bromodichloromethane Dibromomethane Toluene 1,1,2-Trichloroethan 1,3-Dichloropropane Tetrachloroethene Dibromochloromethane Chlorobenzene Ethylbenzene 1,1,1,2-Tetrachloroe m&p-Xylene O-Xylene Styrene Isopropylbenzene Bromoform 1,1,2,2-Tetrachloroe 1,2,3-Trichloropropa n-Propylbenzene Bromobenzene 1,3,5-Trimethylbenze 2-Chlorotoluene 4-Chlorotoluene 4-Chlorotoluene 4-Chlorotoluene 1,2,4-Trimethylbenze 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,2-Dichlorobenzene	0.040000000000000000000000000000000000	500 500 500 500 500 500 500 500 500 500	36 38 31 31 31 31 31 31 31 31 31 31 31 31 31	3826047747677476164945808999702049100194828999789556495250 382604727677476164945808999702049100194828999789556495250	72 75 64 87 107 87 107 14 87 107 87 107 87 107 87 107 87 107 87 107 87 107 87 107 87 107 87 107 87 107 87 87 87 87 87 87 87 87 87 87 87 87 87	7254# 10744411459312288816078778788887875356681531398 1787777888878877777788887877777768876775398	000000000000000000000000000000000000000	25555555555555555555555555555555555555	50-150 5

Method : C:\HPCHEM\1\DATA\051101A\5035.M (Chemstation Integrator)

Title : Method 8260

Last Update : Fri Apr 27 06:53:02 2001

Response via: Initial Calibration

Non-Spiked Sample: 05110103.D

Spike Spike

Sample Duplicate Sample

File ID : 05110104.D | 05110104.D | 05110104.D | VLCS051101a

Acq Time: 11 May 2001 10:45 pm | 11 May 2001 10:45 pm

Compound	Sample Conc	Spike Added	Spike Res	Dup Res		Dup %Rec	RPD	Q(RPD	Limits % Rec
Dichlorodifluorometh Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluorometha 1,1-Dichloroethene Methylene chloride trans-1,2-Dichloroet 1,1-Dichloroethane 2,2-Dichloropropane cis-1,2-Dichloroethan 1,1-Trichloroethan Bromochloromethane 1,1,1-Trichloroethan 1,1-Dichloropropene Carbon tetrachloride 1,2-Dichloroethane Benzene Trichloroethene 1,2-Dichloromethane Dibromodichloromethane Dibromomethane Toluene 1,1,2-Trichloroethan 1,3-Dichloropropane Tetrachloroethene Dibromochloromethane 1,2-Dibromoethane Chlorobenzene Ethylbenzene 1,1,2-Tetrachloroe m&p-xylene Styrene Isopropylbenzene Bromoform 1,1,2,2-Tetrachloroe 1,2,3-Trichloropropal 1,2,3-Trichloropropal 1,2,2-Tetrachloroe 1,2,3-Trichloropropal 1,2,2-Tetrachloroe 1,2,3-Trichloropropal 1,2,2-Tetrachloroe 1,2,3-Trichloropropal 1,2,2-Tetrachloroe 1,2,3-Trichloropropal 1,2,2-Tetrachloroe 1,2,3-Trichloropropal 1,2,2-Tetrachloroe 1,2,3-Trichlorobenzene 1,3,5-Trimethylbenze 1,2,4-Trimethylbenze 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene .0	50000000000000000000000000000000000000	49119856663354616433067036660101250115701914303060911376 5753564545555556656545555555555555555555	4911985666335461643306703660101250115545555555566911376	108 # 101	108 # # 101	000000000000000000000000000000000000000	2555554 2555555555555555555555555555555	50-150 50-150	

Spike Recovery and RPD Summary Report - SOIL

Method : H:\MSDCHEM\1\DATA\062001A\5035.M (Chemstation Integrator)
Title : Method 8260
Last Update : Wed Jun 20 08:14:15 2001
Response via : Initial Calibration

Non-Spiked Sample: 06200103.D

Spike Spike

Duplicate Sample Sample

8:59 pm

Compound	Sample Conc	Spike Added	Spike Res	Dup Res	Spike %Rec	Dup %Rec	RPD	QC RPD	Limits % Rec
Dichlorodifluorometh Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluorometha 1,1-Dichloroethene Methylene chloride trans-1,2-Dichloroet 1,1-Dichloroethane 2,2-Dichloropropane cis-1,2-Dichloroethane 1,1,1-Trichloroethan 1,1-Dichloromethane 1,1,1-Trichloroethan 1,2-Dichloropropene Carbon tetrachloride 1,2-Dichloropropane Bromodichloromethane 1,2-Dichloropropane Bromodichloromethane cis-1,3-Dichloroprop Toluene trans-1,3-Dichloroprop Toluene trans-1,3-Dichloroprop Toluene trachloroethene Dibromochloromethane 1,2-Dibromoethane 1,2-Dibromoethane Chlorobenzene Ethylbenzene 1,1,1,2-Tetrachloroe m&p-Xylene Styrene Isopropylbenzene Bromoform 1,1,2,2-Tetrachloroe 1,2,3-Trichloropropa n-Propylbenzene Bromoform 1,1,2,2-Tetrachloroe 1,2,3-Trichloropropa n-Propylbenzene Bromobenzene 1,3,5-Trimethylbenze 2-Chlorotoluene 4-Chlorotoluene tert-Butylbenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene	$ \begin{array}{c} 0.0 \\ 0.0 $	50 50 50 50 50 50 50 50 50 50 50 50 50 5	49 49 54 54 54 54 54 54 51 51 51 51 51 51 51 51 51 51 51 51 51	49 49 45 44 44 45 45 41 41 41 41 41 41 41 41 41 41 41 41 41	98 98 108 101 108 101 108 85 101 80 85 80 84 85 80 86 87 86 97 88 97 89 89 89 89 89 89 89 89 89 89 89 89 89	98 98 108 108 108 108 108 108 108 108 108 10	000000000000000000000000000000000000000	25 25 25 25 25 25 25 25 25 25 25 25 25 2	50-150 5

1,2,4-Trichlorobenze 5.4 1,2,3-Trichlorobenze 0.0	50 50	88 121	88 121	165# 165# 242# 242#	0 0	25 50-150 25 50-150
T,Z,3-11 Chronobenzel 0.0 1	50	1 121 1	I	2.12" 2.12"	, ,	, _0 ,

- Fails Limit Check

5035.M

Thu Jun 21 10:22:21 2001

MSDA

Spike Recovery and RPD Summary Report - SOIL

Method : H:\MSDCHEM\1\DATA\062001\5035.M (Chemstation Integrator)
Title : Method 8260
Last Update : Wed Jun 20 08:14:15 2001
Response via : Initial Calibration

Non-Spiked Sample: 06200103.D

Spike Spike

Duplicate Sample sample

File ID: 06200104.D Sample: VLCS062001 Acq Time: 20 Jun 2001 9:00 am | 06200104.D

VLCS062001 20 Jun 2001 9:00 am

Compound	Sample Conc	Spike Added	Spike Res	Dup Res	Spike %Rec	Dup %Rec	RPD	QC RPD	Limits % Rec
Dichlorodifluorometh Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene Methylene chloride trans-1,2-Dichloroethane 2,2-Dichloropropane cis-1,2-Dichloropropane cis-1,2-Dichloropropane cis-1,2-Dichloropropane carbon tetrachloride 1,2-Dichloropropane Bromochloromethane 1,1-Dichloropropane Bromodichloromethane 1,2-Dichloropropane Bromodichloromethane cis-1,3-Dichloropropane Bromodichloromethane cis-1,3-Dichloropropane Tetrachloroethene Dibromomethane cis-1,3-Dichloropropane Tetrachloroethene Dibromochloromethane 1,2-Dibromoethane 1,2-Dibromoethane Chlorobenzene Ethylbenzene 1,1,1,2-Tetrachloroe m&p-Xylene o-Xylene Styrene Isopropylbenzene Bromoform 1,1,2,2-Tetrachloroe n-Xylene Styrene Isopropylbenzene Bromobenzene 1,3,5-Trimethylbenzene 1,3,5-Trimethylbenzene 1,3-Dichlorobenzene 1,3-Dichloro	0.0700000000000000000000000000000000000	500 500 500 500 500 500 500 500 500 500	42 437 460 417 365 417 365 418 365 418 365 418 418 418 418 418 418 418 418 418 418	423760241765784896927899041235013923923434428994384428983343833438334333434344433344443334444	84 84 86 97 81 82 84 88 87 87 87 87 87 88 88 88 88 88 88 88	84 84 84 84 86 87 87 87 87 87 87 87 87 87 87 88 87 88 87 88 88	000000000000000000000000000000000000000	25 25 25 25 25 25 25 25 25 25 25 25 25 2	50-150 5
1 2 Dibrama 2 chloro		50 i	25	25	71 i	-71 İ	n i	25 l	50-1501

1,2,4-Trichlorobenze 3.5 1,2,3-Trichlorobenze 0.0	50 50	33 75	33 75	60 149	60 149	() (25 25	50-150 50-150
---	------------	------------	------------	-----------	-----------	---	---------------	----------	---------------------

- Fails Limit Check

5035.M

Thu Jun 21 10:21:30 2001

MSDA

Lab Name: _	STAT	Analysis		Contract:	Burns&McDonnel
Project No:	701824	Site:	Location:	Group:	

	Sample No.	S1	S2	S3	Total Out
01	PNA Soil Blank 05/07/01	36	42	58	0
02	PNA Soil LCS 05/07/01	45	50	64	0
03	RPM-SB34-001	36	45	56	0
04	RPM-SB41-001	37	43	57	. 0
05	RPM-SB40-001	64	74	110	0
06	RPM-SB40-002	30	39	56	0
07	RPM-SB40-003	39	45	55	0
08	RPM-SB47-001	27	33	41	0
09	RPM-SB46-001	37	46	67	0
10	RPM-SB46-002	34	41	53	0
11	RPM-SB45-001	25	30	38	0
12	PNA Soil Blank 05/08/01	40	45	63	0
13	PNA Soil LCS 05/08/01	44	50	58	0
14	RPM-SB44-001	23	27*	28	1
15	RPM-SB44-002	22*	25*	33	2
16	RPM-SB43-001	30	35	52	0
17	RPM-SB42-001	34	41	51	0
18	RPM-SB42-002	29	35	44	0
.19	RPM-SB51-001	28	33	43	0
20	RPM-SB51-002	28	33	44	0
21	RPM-SB52-001	. 24	30	40	0
22	RPM-SB52-002	32	35	45	0
23	RPM-SB59-001	48	60	78	0
24	RPM-SB59-001-D1	D	D	D	0
25	RPM-SB59-002	39	43	49	0
26	RPM-SB58-001	33	38	54	0
27	RPM-SB58-002	33	39	47	0
28	RPM-SB53-001	25	30	34	0
29	RPM-SB53-002	33	37	49 ·	0

 QC LIMITS

 S1 (NBZ) = d5-Nitrobenzene
 (23-120)

 S2 (FBP) = 2-Fluorobiphenyl
 (30-115)

 S3 (TPH) = Terphenyl-d14
 (18-137)

Column to be used to flag recovery values

* Values outside of contract required QC limits

D Surrogate Diluted out

Lab Name: STAT Analysis Contract: Burns&McDonnel
Project No: 701830 Site: Location: Group: ____

	Sample No.	S1	S2	S3	Total Out
01	PNA Soil Blank 05/09/01	38	42	54	0
02	PNA Soil LCS 05/09/01	41	44	61	0
03	RPM-SB50-001	38	41	50	0
04	RPM-SB50-002	43	48	67	0
05	RPM-SB50-004	36	42	58	0
06	RPM-SB49-001	33	46	61	0
07	RPM-SB49-002	37	43	61	0
08	RPM-SB48-001	40	42	60	0
09	RPM-SB48-002	29	34	57	0
10	RPM-SB55-001	34	40	48	0
11	RPM-SB55-002	32	37	43	0
12	RPM-SB55-002MS	42	47	62	0
13	RPM-SB55-002MSD	23	33	43	0

QC LIMITS

(23-120)

(30-115)

(18-137)

S1 (NBZ) = d5-Nitrobenzene S2 (FBP) = 2-Fluorobiphenyl

S3 (TPH) = Terphenyl-d14

35 (1111) Telphonyl di

Column to be used to flag recovery values

* Values outside of contract required QC limits

D Surrogate Diluted out

FORM II SV-2

Lab Name: STAT Analysis Contract: Burns&McDonnel
Project No: 701830 Site: Location: Group: ____

	Sample No.	S1	S2	S3	Total Out
01	PNA Soil Blank 2 05/09/01	29	33	46	0
02	PNA Soil LCS 2 05/09/01	33	36	49	0
03	RPM-SB55-003	30	33	51	0
04	RPM-SB56-001	42	51	69	0
05	RPM-SB56-002	34	40	51	0
06	RPM-SB56-003	27	32	43	0
07	RPM-SB56-004	25	28*	35	111
08	RPM-SB56-005	33	37	45	0 -
09	RPM-SB57-001	14*	26*	37	2
10	RPM-SB57-001-D1	D	D	D	0
11	RPM-SB57-001-D2	D	D	D	0
12	RPM-SB57-002	26	26*	32	1
13	RPM-SB54-001	31	36	45	0
14	RPM-SB54-002	33	38	50	0
15	RPM-SB54-003	38	42	43	0
16	RPM-SB39-001	30	33	34	0
17	RPM-SB39-002	33	38	46	0
18	RPM-SB39-003	33	37	46	0
19	917241	31	32	49	0
20	917241MS	31	35	58	0
21	917241MSD	41	44	60	0 .

QC LIMITS

(23-120)

(30-115)

(18-137)

S1 (NBZ) = d5-Nitrobenzene

S2 (FBP) = 2-Fluorobiphenyl

S3 (TPH) = Terphenyl-d14

Column to be used to flag recovery values

* Values outside of contract required QC limits

D Surrogate Diluted out

FORM II SV-2

 Lab Name:
 STAT Analysis
 Contract: Burns&McDonnel

 Project No :
 701830
 Site:
 Location:
 Group:

	Sample No.	S1	S2	S3	Total Out
01	PNA Soil Blank 05/10/01	29	33	46	0
02	PNA Soil LCS 05/10/01	33	36	49	0
03	RPM-SB56-003	27	32	43	0
04	RPM-SB56-004	25	28*	35	1
05	RPM-SB57-001	14*	26*	37	2

QC LIMITS

(23-120)

(30-115)

(18-137)

S1 (NBZ) = d5-Nitrobenzene

S2 (FBP) = 2-Fluorobiphenyl

S3 (TPH) = Terphenyl-d14

Column to be used to flag recovery values

* Values outside of contract required QC limits

D Surrogate Diluted out

FORM II SV-2

2D SOIL SEMIVOLATILE SURROGATE RECOVERY

Lab Name:	STAT Analysis		Contract:	Burns & McDonnell
Lab Code:	702051	Case No.:	SAS No	SDG No.:
Level (low/n	ned) LOW			

Level: (low/med) LOVV

01 02 03 04 05 06	EPA	S1	S2	S3	S4	TOT
	SAMPLE NO.	DCB #	NBZ #	2FP #	TPH #	out
	SBLNK 061801	48	52	54	74	0
	SLCS 061801	46	51	51	74	0
	RPM-SB070-001	41	44	49	83	0
	RPM-SB071-001	40	43	46	83	0
		31	31	40	89	0
	RPM-SB083-002	46	50	54	65	0

QC LIMITS

S1	DCB	=	1,2-Dichlorobenzene-d4	(30-130)
S2	NBZ	=	Nitrobenzene-d5	(30-130)
S3	2FP	=	2-Fluorobiphenyl	(30-130)
S4	TPH	=	p-Terphenyl-d14	(30-130)

Column to be used to flag recovery values

D Surrogate diluted out

^{*} Values outside of contract required QC limits

Lab Name:	STAT Analysis			Contract:		
Lab Code	Market	Case No.	701824	SAS No.1	SDG No.:	
Level: (low/m	ed) LOW					

1	EPA	SMC1	SMC2	SMC3	TOT
	SAMPLE NO.	(DBF) #	(TOL) #	(BFB) #	OUT
01	VBLK051201	105	100	89	0
02	VLCS051201	104	100	. 99	0
03	RPM-SB34-001	169 *	77	62	1
04	RPM-SB47-001	157 *	80	62	1
05	RPM-SB46-002	115	100	76	0
06	RPM-SB43-001	155 *	83	61	1
07	RPM-SB42-002	132 *	98.	73	1
08	RPM-SB52-001	138 *	86	57 *	2
09	RPM-SB58-001	114	105	84	0
10	RPM-SB53-001	160 *	82	60	1

QC LIMITS

 SMC1 (DBF)
 =
 Dibromofluoromethane
 (70-130)

 SMC2 (TOL)
 =
 Toluene-d8
 (75-138)

 SMC3 (BFB)
 =
 Bromofluorobenzene
 (59-130)

Column to be used to flag recovery values

^{*} Values outside of contract required QC limits

Lab Name:	STAT An			Contract		
Lab Code:		Case No.	701824	SAS No.:	SDG No.:	
Level: (low/m	ed) LO\	W				

	EPA	SMC1	SMC2	SMC3	TOT
	SAMPLE NO	(DBF) #	(TOL) #	(BFB) #	OUT
01	VBLK051101	92	101	92	0
02	VLCS051101	93	100	95	0
03	RPM-SB34-001	132 *	82	68	1
04	RPM-SB41-001	107	91	70	0
05	RPM-SB40-001	112	91	66	0
06	RPM-SB40-002	130	86	72	0
07	RPM-SB40-003	118	87.	70	0
80	RPM-SB47-001	133 *	78	60	1
09	RPM-SB46-001	113	92	68	0
10	RPM-SB46-002	131 *	82	66	1
11	RPM-SB45-001	107	93	71	0
12	RPM-SB44-001	114	93	72	0
13	RPM-SB44-002	104	96	76	0
14	RPM-SB43-001	152 *	79	59 *	2
15	RPM-SB43-001	109	101	87	0
16	RPM-SB42-001	147 *	81	62	1

QC LIMITS

				QO 2
SMC1	(DBF)	=	Dibromofluoromethane	(70-130)
SMC2	(TOL)	=	Toluene-d8	(75-138)
SMC3	(BFB)	=	Bromofluorobenzene	(59-130)

Column to be used to flag recovery values

^{*} Values outside of contract required QC limits

D System Monitoring Compound diluted out

Lab Name:	STAT Analysis			Contract:		
Lab Code:		Case No.:	701824	SAS No.:	SDG No.:	
Level: (low/m	ed) LOW					

	EPA	SMC1	SMC2	SMC3	TOT
	SAMPLE NO.	(DBF) #	(TOL) #	(BFB) #	OUT
01	VBLK051101A	97	102	90	0
02	VLCS051101A	99	101	96	0
03	RPM-SB51-001	119	92	65	0
04	RPM-SB51-002	106	98	80	0
05	RPM-SB52-001	129	85	57 *	1
06	RPM-SB52-002	107	101	88	0
07	RPM-SB59-001	116	98.	68	0
08	RPM-SB59-002	115	98	77	0
09	RPM-SB58-001	132 *	92	65	1
10	RPM-SB58-002	112	101	79	0
11	RPM-SB53-001	136 *	91	66	1
12	RPM-SB53-002	116	100	77	0

QC LIMITS

SMC1	(DBF)	. =	Dibromofluoromethane	(70-130)
SMC2	(TOL)	=	Toluene-d8	(75-138)
SMC3	(BFB)	-	Bromofluorobenzene	(59-130)

Column to be used to flag recovery values

^{*} Values outside of contract required QC limits

Lab Name:	STAT Analysis			Contract:		
Lab Code:		Case No.:	701830	SAS No."	SDG No.:	
Level: (low/m	ed) LOW					

	EPA	SMC1	SMC2	SMC3	TOT
	SAMPLE NO.	(DBF) #	(TOL) #	(BFB) #	OUT
01	VBLK051501	90	94	109	0
02	VLCS051501	89	95	110	0
03	RPM-SB56-001	95	95	110	0
04	RPM-SB56-002	106	89	83	0
05	RPM-SB56-003	98	93	96	0
06	RPM-SB56-004	101	97	99	0
07	RPM-SB56-005	101	94	100	0
08	RPM-SB57-001	113	81	77	0
09	RPM-SB57-002	100	95	94	0
10	RPM-SB54-001	101	97	99	0
11	RPM-SB54-002	102	96	102	0
12	RPM-SB54-003	124	82	81	0
13	RPM-SB39-001	112	92	80	0
14	RPM-SB39-002	102	98	108	0
15	RPM-SB39-003	123	81	78	0

QC LIMITS

SMC1	(DBF)	=	Dibromofluoromethane	(70-130)
SMC2	(TOL)	=	Toluene-d8	(75-138)
SMC3	(BFB)	=	Bromofluorobenzene	(59-130)

Column to be used to flag recovery values

^{*} Values outside of contract required QC limits

Lab Name:	STAT Analysis			Contract: _		
Lab Code:		Case No.:	701830	SAS No.	SDG No.:	
Level: (low/m	ed) LOW					

	EPA	SMC1	SMC2	SMC3	TOT
	SAMPLE NO	(DBF) #	(TOL) #	(BFB) #	OUT
01	VBLK051101	102	103	100	0
02	VLCS051101	105	101	109	0
03	RPM-SB50-001	120	94	72	0
04	RPM-SB50-002	114	92	81	0
05	RPM-SB50-004	114	94	77	0
06	RPM-SB49-001	112	99	84	0
07	RPM-SB49-002	117	100	93	0
08	RPM-SB48-001	122	93	77	0
09	RPM-SB48-002	116	97	86	0
10	RPM-SB55-001	121	98	78	0
11	RPM-SB55-002	120	95	74	0
12	RPM-SB55-003	113	97	80	0

QC LIMITS

SMC1	(DBF)	=	Dibromofluoromethane	(70-130)
SMC2	(TOL)	=	Toluene-d8	(75-138)
SMC3	(BFB)	=	Bromofluorobenzene	(59-130)

Column to be used to flag recovery values

^{*} Values outside of contract required QC limits

Lab Name: S	TAT Analysis			Contract:		
Lab Code:	•	Case No.:	702045	SAS No.:	SDG No.:	
Level: (low/med) LOW	· 				

EPA	SMC1	SMC2	SMC3	TOT
SAMPLE NO.	(DBF) #	(TOL) #	(BFB) #	OUT
VBLK062001	99	98	106	0
VLCS062001	99	97	111	0
RPM-SB074-00	98	93	85	0
RPM-SB074-00	101	93	92	0
RPM-SB074-00	98	91	88	0
RPM-SB072-00	105	90	83	0
RPM-SB073-00	97	99	105	0
RPM-SB075-00	101	96	98	0
RPM-SB077-00	102	93	85	0
RPM-SB077-00	102	98	103	0
RPM-SB076-00	103	96	87	0
RPM-SB076-00	103	93	89	0
RPM-SB078-00	105	97	99	00
RPM-SB076-00	99	95	102	0
RPM-SB079-00	102	95	93	00
RPM-SB079-00	103	94	87	00
RPM-SB080-00	106	91	85	0
	SAMPLE NO. VBLK062001 VLCS062001 RPM-SB074-00 RPM-SB074-00 RPM-SB072-00 RPM-SB075-00 RPM-SB077-00 RPM-SB077-00 RPM-SB076-00 RPM-SB076-00 RPM-SB076-00 RPM-SB076-00 RPM-SB076-00 RPM-SB076-00 RPM-SB079-00 RPM-SB079-00	SAMPLE NO. (DBF) # VBLK062001 99 VLCS062001 99 RPM-SB074-00 98 RPM-SB074-00 101 RPM-SB074-00 98 RPM-SB072-00 105 RPM-SB073-00 97 RPM-SB075-00 101 RPM-SB077-00 102 RPM-SB077-00 102 RPM-SB076-00 103 RPM-SB078-00 105 RPM-SB076-00 99 RPM-SB079-00 102 RPM-SB079-00 103	SAMPLE NO. (DBF) # (TOL) # VBLK062001 99 98 VLCS062001 99 97 RPM-SB074-00 98 93 RPM-SB074-00 101 93 RPM-SB074-00 98 91 RPM-SB072-00 105 90 RPM-SB073-00 97 99 RPM-SB075-00 101 96 RPM-SB077-00 102 93 RPM-SB077-00 102 98 RPM-SB076-00 103 96 RPM-SB076-00 103 93 RPM-SB078-00 105 97 RPM-SB076-00 99 95 RPM-SB079-00 102 95 RPM-SB079-00 103 94	SAMPLE NO. (DBF) # (TOL) # (BFB) # VBLK062001 99 98 106 VLCS062001 99 97 111 RPM-SB074-00 98 93 85 RPM-SB074-00 101 93 92 RPM-SB074-00 98 91 88 RPM-SB072-00 105 90 83 RPM-SB073-00 97 99 105 RPM-SB075-00 101 96 98 RPM-SB077-00 102 93 85 RPM-SB077-00 102 98 103 RPM-SB076-00 103 96 87 RPM-SB076-00 103 93 89 RPM-SB078-00 105 97 99 RPM-SB076-00 99 95 102 RPM-SB079-00 102 95 93 RPM-SB079-00 103 94 87

QC LIMITS

				Q. 0 =
SMC1	(DBF)	=	Dibromofluoromethane	(70-121)
SMC2		=	Toluene-d8	(88-115)
SMC3	•	=	Bromofluorobenzene	(59-113)

Column to be used to flag recovery values

- * Values outside of contract required QC limits
- D System Monitoring Compound diluted out

Lab Name:	STAT Analysis		Contract:		
Lab Code:	70205	Case No.:	SAS No.:	SDG No.:	
l evel- (low/m	ned) LOW				

	EPA	SMC1	SMC2	SMC3	TOT
	SAMPLE NO.	(DBF) #	(TOL) #	(BFB) #	OUT
01	VBLK062001	99	98	106	0
02	VLCS062001	95	100	96	0
03	RPM-SB070-00	103	93	81	0
04	RPM-SB071-00	104	94	80	0
05	RPM-SB083-00	95	100	95	0
06	RPM-SB083-00	100	91	79	0

QC LIMITS

SMC1	(DBF)	=	Dibromofluoromethane	(70-121)
SMC2	(TOL)	=	Toluene-d8	(81-117)
SMC3	(BFB)	=	Bromofluorobenzene	(59-113)

Column to be used to flag recovery values

^{*} Values outside of contract required QC limits

Lab Name:	STAT Analysis		Contract: _		
Lab Code:		Case No.: 70204	45 SAS No.:	SDG No.:	
Level: (low/m	ed) LOW				

	EPA	SMC1	SMC2	SMC3	TOT
	SAMPLE NO.	(DBF) #	(TOL) #	(BFB) #	OUT
01	VBLK062001A	100	101	106	0
02	VLCS062001A	103	101	111	0
03	RPM-SB081-00	105	97	89	0
04	RPM-SB081-00	104	96	90	0
05	RPM-SB082-00	111	89	77	0

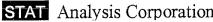
QC LIMITS

SMC1	(DBF)	=	Dibromofluoromethane	(70-121)
SMC2		=	Toluene-d8	(88-115)
SMC3	·	=	Bromofluorobenzene	(59-113)

Column to be used to flag recovery values

- * Values outside of contract required QC limits
- D System Monitoring Compound diluted out

Lab Name:	STAT Analysis	C	Contract.				
Lab Code:	702051	Case No.		SAS No.:		SDG No.:	
Level: (low/r	ned) LOW						


	EPA	SMC1	SMC2	SMC3	TOT
	SAMPLE NO.	(DBF) #	(TOL) #	(BFB) #	OUT
01	VBLK062101A	104	107	106	0
02	VLCS062101A	96	102	97	0
03	RPM-SB083-002	1 06	102	97	0

QC LIMITS

SMC1 (DBF) = Dibromofluoromethane (70-121) SMC2 (TOL) = Toluene-d8 (81-117) SMC3 (BFB) = Bromofluorobenzene (59-113)

Column to be used to flag recovery values

- * Values outside of contract required QC limits
- D System Monitoring Compound diluted out

STAT Analysis Corporation:
2201 West Campbell Park Drive, Chicago, Illinois 60612-3547 Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

INORGANIC Initial Batch QC

Lab Name:

Burns & McDonnell

Contract:

Project No.:

27194-4.07

Instrument: ICPMS, CV, LaCHAT

Batch No.:

701824

Buton 1 (o									Prepara	ation	
	LC	CS 1 (μg/L	.)	L.	CS 2 (μg/L	.)			Blan	k	
Analyte	True	Found	, %R	True	Found	%R	RPD	С		С	M
Arsenic	500.0	423.40	84.7	500.0	416.90	83.4	1.5		0.10		MS
Barium	500.0	461.30	92.3	500.0	455.40	91.1	1.3		0.09		MS
Cadmium	500.0	442.60	88.5	500.0	433.80	86.8	2.0		0.95		MS
Chromium	500.0	472.70	94.5	500.0	457.70	91.5	3.2		0.36		MS
Lead	500.0	477.50	95.5	500.0	464.90	93.0	2.7		0.12		MS
Mercury	2.5	2.30	92.0	2.5	2.30	92.0	0.0		-0.02		CV
Selenium	500.0	389.00	77.8	500.0	382.10	76.4	1.8		-0.37		MS
Silver	500.0	434.70	86.9	500.0	443.50	88.7	2.0		0.04		MS
Cyanide	250	250.01	100.0	250	248.76	99.5	0.5		-1.46		

STAT Analysis Corporation:

2201 West Campbell Park Drive, Chicago, Illinois 60612-3547
Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

INORGANIC Initial Batch QC

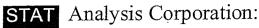
Lab Name:

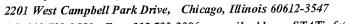
STAT Analysis Corporation

Client Burns & McDonnell

Project No.:

27194-3.02


Instrument: ICPMS, CV


Batch No.:

702045

Associated Samples:

									Prepara	tion	1
	L	CS 1 (μg/I	<u>(</u>)	L	CS 2 (µg/I	L)			Blan	Blank C	
Analyte	True	Found	%R	True	Found	%R	RPD	С		С	M
Arsenic	500	448	89.5	500	435	86.9	2.9		0.24		MS
Barium	500	506	101	500	496	99.1	2.1		0.40		MS
Cadmium	500	462	92.5	500	452	90.4	2.2		-0.02		MS
Chromium	500	470	94.0	500	455	91.0	3.2		0.30		MS
Lead	500	497	99.3	500	482	96.4	3.0		-0.07		MS
Mercury	2.50	2.54	102	2.50	2.45	98.0	3.6		0.00		CV
Selenium	500	431	86.1	500	423	84.5	1.9		0.27		MS
Silver	500	517	103	500	506	101	2.1		0.11		MS

Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

INORGANIC Initial Batch QC

Lab Name:

STAT Analysis Corporation

Client Burns & McDonnell

Project No.:

27194-3.02

Instrument: LaCHAT

Batch No.:

702045

Associated Samples:

918691 - 918702

									Prepara	ation	
	LCS 1 (μg/L) True Found %R			L	CS 2 (μg	/L)			Blank		
Analyte				True	Found	%R	RPD	C		С	M
Cyanide	250	268	107	250	272	109	1.4		11.37		LC

INORGANIC Matrix Spike and Matrix Spike Dupliacte Recovery Form

Lab Name:

STAT Analysis Corporation

Instrument: LaCHAT

Project No.:

2194-3.02

Cyanide

Batch No.:

702045

Sample No.: 918625

Weight

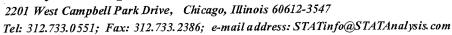
Matrix (soil/water):

Soil

Sample Spike No.: 918625 MS

1.000

Concentration Units:


μg/L

Sample Spike Duplicate No.: 918625 MSD

1.000

Associated Samples:

	Spike Added	Spike Added	Sample			G	7.00	0/10	C	DDD		M
Analyte	MS	MSD	Result	MS	%R	<u>C</u>	MSD	%R	C	RPD	Q	M
Cyanide	250	250	1.63	268	107		265	106		1.1		LC

INORGANIC Initial Batch QC

Lab Name:

STAT Analysis Corporation

Client: Burns & McDonnell

Project No.:

27194-3.02

Instrument: LaCHAT

Batch No.:

702045

Associated Samples:

918703 - 918706

									Prepar	ation	
	LCS 1 (µg/L) True Found %R			L	CS 2 (µg/I			Blar	ık		
Analyte	True	Found	%R	True	Found	%R	RPD	C		С	M
Cyanide	250	262	105	250	261	105	0.1		11.37		LC
											LC

INORGANIC Matrix Spike and Matrix Spike Dupliacte Recovery Form

Lab Name:

STAT Analysis Corporation

Instrument: LaCHAT

Project No.:

2194-3.02

Cyanide

Batch No .:

702045

Sample No.: 918703

Matrix (soil/water):

Soil

Sample Spike No.: 918703 MS

Concentration Units:

μg/L

Sample Spike Duplicate No.: 918703 MS

Associated Samples:

	Spike	Spike										
	Added	Added	Sample									
Analyte	MS	MSD	Result	MS	%R	C	MSD	%R	С	RPD	Q	M
Cyanide	250	250	9.40	262	101		262	101		0.1		LC

2201 West Campbell Park Drive, Chicago, Illinois 60612-3547 Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

INORGANIC Initial Batch QC

Lab Name:

STAT Analysis Corporation

Contract: Burns & McDonnell

Project No.:

27194-4.07, Peoples-Rogers Park

Instrument: ICPMS

Batch No.:

701808, 701817, 701824, 701830

Matrix:

SPLP

Concentration Units: µg/L Associated Samples: 917123

	1								Prepar	ation	
	L	CS 1 (mg/	(L)	LCS	3 2 (mg/L))			Bla	nk	
Analyte	True	Found	%R	True	Found	%R	RPD	C		. C	M
Barium	500	524	105	500	512	102	2.32		-0.02		MS
Cadmium	500	503	101	500	493	98.6	2.05		-0.03		MS
Chromium	500	523	105	500	514	103	1.72		0.02		MS
Lead	500	493	98.6	500	483	96.6	2.07		-0.03		MS
Silver	500	512	102	500	486	97.2	5.23		-0.10		MS

INORGANIC MATRIX SPIKE AND MATRIX SPIKE DUPLICATE RECOVERY

Lab Name:

STAT Analysis Corporation

Project No.:

27194-4.07, Peoples-Rogers Park

Instrument: ICPMS

Batch No.:

701808, 701817, 701824, 701830

Sample No. 918141

Weight

Matrix:

SPLP

Sample Spike No.: 918141 MS

1.000

μg/L

1.000

Concentration Units

Sampl Spike Duplicate No: 918141 MSD

Associated Samples:

917123

										1	ì	1
	Spike	Spike										
	Added	Added	Sample			•						
Analyte	MS	MSD	Result	MS	%R	С	MSD	%R	,C	RPD	Q	M
Barium	500	500	154	709	111		715	112		0.83		MS
Cadmium	500	500	0.12	535	107		539	108		0.67		MS
Chromium	500	500	36.6	579	109		584	109		0.77		MS
	500	500	18.0	543	105		559	108		2.98		MS
Lead		500	-0.38	61.7	12.4	#	59.9	12.1	#	2.93		MS
Silver	500	200	-0.56	UI-/	12.7	11	22.2	1 2 2 . 1				

[#] Attributed to Matrix Interference

SAL Analysis Corporation:

2201 West Campbell Park Drive, Chicago, Illinois 60612-3547

Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

INORGANIC Initial Batch QC

Lab Name:

STAT Analysis Corporation

Contract: Burns & McDonnell

Project No.:

27194-4.07, Peoples-Rogers Park

Instrument: ICPMS

Batch No.:

701808, 701817, 701824, 701830

Matrix:

SPLP

Concentration Units: µg/L

Associated Samples: 917184, 917179

·		LCS 1 (µs	z/L)	LC	S 2 (µg/L	.)			Prepa Bla		
Analyte	True	Found	%R	True	Found	%R	RPD	С		С	M
Barium	500	478	95.6	500	485	96.9	1.35		-0.10		MS
Cadmium	500	488	97.6	500	499	99.7	2.17		-0.02		MS
Chromium	500	485	97.0	500	488	97.5	0.56		0.02		MS
Lead	500	466	93.1	500	474	94.7	1.70		0.03		MS
Silver	500	446	89.1	500	455	90.9	2.02		-0.05		MS

INORGANIC MATRIX SPIKE AND MATRIX SPIKE DUPLICATE RECOVERY

Lab Name:

STAT Analysis Corporation

Project No.:

27194-4.07, Peoples-Rogers Park

Batch No.:

701808, 701817, 701824, 701830

Instrument: ICPMS

Sample No. 917184 Sample Spike No.: 917184MS Weight 1.000

Matrix:

SPLP

Sampl Spike Duplicate No: 917184MSD

1.000

Concentration Units: µg/L

Associated Samples: 917184, 917179

	Spike	Spike	-	,								
	Added	Added	Sample								_	
Analyte	MS	MSD	Result	MS	%R	С	MSD	%R	С	RPD	- Q	M
Barium	500	500	1,137	1,591	90.8		1,607	94.0		1.00		MS
Cadmium	500	500	0.16	476	95.2		479	95.8		0.65		MS
Chromium	500	500	28.1	485	91.3		483	91.0		0.31		MS
Lead	500	500	29.0	497	93.6		493	92.9		0.75		MS
Silver	500	500	0.02	449	89.7		444	88.8		1.01		MS

2201 West Campbell Park Drive, Chicago, Illinois 60612-3547

Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

INORGANIC Initial Batch QC

Lab Name:

STAT Analysis Corporation

Contract: Burns & McDonnell

Project No.:

27194-4.07, Peoples-Rogers Park

Instrument: ICPMS

Batch No.:

701808, 701817, 701824, 701830

Matrix:

SPLP

Concentration Units:

μg/L

Associated Samples:

916985, 916986, 916988, 916990, 917034, 917035, 917037, 917110, 917113,

917119, 917120, 917125, 917168, 917169, 917172, 917174, 917176, 917178, 917180, 917181

									Prepa	ration	
	L	CS 1 (μg/	L)	L	CS 2 (µg/]	L)			Bla	nk	
Analyte	True	Found	%R	True	Found	%R	RPD	С		С	М
Barium	500	529	106	500	491	98.1	7.55		0.12		MS
Cadmium	500	562	112	500	517	103	8.41		0.10		MS
Chromium	500	546	109	500	498	99.6	9.23		0.23		MS
Lead	500	529	106	500	489	97.8	7.94		0.28		MS
Silver	500	550	110	500	496	99.3	10.2		0.24		MS

INORGANIC MATRIX SPIKE AND MATRIX SPIKE DUPLICATE RECOVERY

Lab Name:

STAT Analysis Corporation

Project No.:

27194-4.07, Peoples-Rogers Park

Instrument: ICPMS

701808, 701817, 701824, 701830

Sample No. 916990

Batch No.:

Weight

Matrix:

SPLP

Sample Spike No.: 916990 MS

Sampl Spike Duplicate No: 916990 MSD 1.000

1.000

Concentration Units:

μg/L

Associated Samples:

916985, 916986, 916988, 916990, 917034, 917035, 917037, 917110, 917113,

917119, 917120, 917125, 917168, 917169, 917172, 917174, 917176, 917178, 917180, 917181

	Spike	Spike										ŀ
	Added	Added	Sample									
Analyte	MS	MSD	Result	MS	%R	С	MSD	%R	C	RPD	Q	M
Barium	500	500	285	720	87.0		722	87.4		0.31		MS
Cadmium	500	500	0.02	424	84.7		432	86.3		1.87		MS
Chromium	500	500	4.21	434	86.0		436	86.3	-	0.44		MS
Lead	500	500	2.27	433	86.1		429	85.4	-	0.84		MS
Silver	500	500	0.02	415	83.0		416	83.2		0.34		MS

2F SOIL PCB SURROGATE RECOVERY

Lab Name: STAT Analysis Contract: Burns & McDonnell
Project No: 702045 Site: Location: Group: GC Column (1): XTI-5 ID: 0.25 (mm) GC Column (2): CLPesticides ID 0.25 (mm)

	Sample No.	TCX (1)	TCX(2)	DCB(1)	DCB(2)	TOT
	1					OUT
01	PCB Blank Soil 06/15/01	66	75	101	113	0
02	LCS PCB Soil 06/15/01	82	94	107	119	0
03	RPM-SB077-001	69	75	77	89	0
04	RPM-SB077-002	72	78	84	97	0
05	RPM-SB078-001	93	99	82	101	0
06	RPM-SB078-002	94	100	85	100	0
07	RPM-SB079-001	105	106	85	99	0
09	RPM-SB079-002	102	108	89	102	0
10	RPM-SB080-001	90	74	127	105	0
11						
12						
13						
14						
15						
16						
17						
18	·					
19						
20						
21						
22						
23						
24	·					
25						

Advisory QC LIMITS (30-150) (30-150)

TCX = Tetrachloro-m-xylene DCB = Decachlorobiphenyl

Column to be used to flag recovery values

* Values outside of contract required QC limits

D Surrogate Diluted out

Groundwater Laboratory Control Standard Data Sheets

The Peoples Gas Light and Coke Company
The Rogers Park Sub-Shop
Main Parcel

4A VOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.

Lab Name:	STAT Analysis		Contract:	VBLK0/0201
Lab Code:	-	Case No.: 702087	SAS No.: S	SDG No.:
Lab File ID:	07020110.D		Lab Sample ID:	VBLK070201
Date Analyze	d: 07/02/01		Time Analyzed:	15:38
GC Column:	RTX502. ID:	0.25 (mm)	Heated Purge:	(Y/N) Y
nstrument ID	: <u>VOC-1</u>			

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	EPA	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID .	ANALYZED
01	RPM-MW001-002M	918958MS B&M 702087	07020112.D	16:53
02	RPM-MW001-002M	918958MSD B&M 702087	07020113.D	17:27
03	RPM-MW001-002	918958 B&M 702087	07020114.D	18:02
04	RPM-MW002-002	918959 B&M 702087	07020115.D	18:37
05	RPM-MW003-002	918960 B&M 702087	07020116.D	19:12
06	RPM-MW004-002	918961 B&M 702087	07020117.D	19:47
07	RPM-MW005-002	918962 B&M 702087	07020118.D	20:22

COMMENTS:

Method : C:\HPCHEM\1\DATA\070201\5030.M (Chemstation Integrator)
Title : Method 8260
Last Update : Mon Jul 02 16:12:07 2001
Response via : Initial Calibration

Non-Spiked Sample: 07020110.D

Spike Sample

Spike Duplicate Sample

File ID: 07020108.D Sample: VLCS070201 Acq Time: 2 Jul 2001 3:03 pm .

| 07020108.D | VLCS070201 | 2 Jul 2001

3:03 pm

Compound	Sample Conc	Spike Added	Spike Res	Dup Res	Spike %Rec	Dup %Rec	RPD	QC RPD	Limits % Rec
Dichlorodifluorometh Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluorometha 1,1-Dichloroethene Methylene chloride trans-1,2-Dichloroet 1,1-Dichloroethane 2,2-Dichloropropane cis-1,2-Dichloroethe Chloroform Bromochloromethane 1,1,1-Trichloroethan 1,1-Dichloropropene Carbon tetrachloride 1,2-Dichloropropane Bromodichloromethane inzene richloroethene 1,2-Dichloropropane Bromodichloromethane Dibromomethane cis-1,3-Dichloroprop Toluene trans-1,3-Dichloroprop Toluene trans-1,3-Dichloroprop 1,1,2-Trichloroethan 1,3-Dichloropropane Tetrachloroethene Dibromochloromethane 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Tetrachloroe m&p-Xylene Styrene Isopropylbenzene Bromoform 1,1,2,2-Tetrachloroe 1,2,3-Trichloropropa n-Propylbenzene Bromobenzene 1,3,5-Trimethylbenze 2-Chlorotoluene 4-Chlorotoluene 4-Chlorotoluene 4-Chlorotoluene 4-Dichlorobenzene 1,3-Dichlorobenzene 1,2,4-Trimethylbenze 1,3-Dichlorobenzene 1,2-Dibromo-3-chloro Naphthalene	1.0 0.0 12:3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	500 500 500 500 500 500 500 500 500 500	65516410443322366546546618869644767738877126641887712665164164188771266516416418771266418869644444444444545454465464187712664188696444444444445454544654464187712664188696444444444444444444445454544654444445454544654444454545446544654444545454465465	655164410443322365746585566618886964474444654554665487716 6451644104433223657465855666188869644744465455746216664187716	127 109 188 103 888 103 886 103 886 103 886 103 886 103 886 103 886 103 886 103 886 103 886 103 886 103 886 103 886 103 886 103 886 103 886 103 886 886 886 886 886 886 886 886 886 88	12793888200886653410999999999999999999999999999999999999	000000000000000000000000000000000000000	15555555555555555555555555555555555555	50-150 5

- Fails Limit Check

5030.M

Tue Jul 03 07:37:18 2001

MSDA

SEMIVOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.

WBLKWOI

Lab Name: STAT Analysis

Case No.:

Contract: Burns&McDonnell

Lab Code:

SDG No.: SAS No.:

Lab File ID:

06270107.D

Lab Sample ID: PNA BLANK

Instrument ID:

GC/MS-SVOC-2

Date Extracted:

06/27/01

Matrix: (soil/water)

WATER

Date Analyzed:

06/27/01

Level: (low/med)

LOW

Time Analyzed:

19:40

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	EPA	LAB	LAB	DATE
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	PNA SOIL LCS 06/27/01	PNASLCS062701	06270108.D	06/27/01
02	RPM-MW001-002	918958	06270109.D	06/27/01
03	RPM-MW002-002	918959	06270110.D	06/27/01
04	RPM-MW003-002	918960	06270111.D	06/27/01
05	RPM-MW004-002	918961	06270112.D	06/27/01
06	917841	917841	05210137.D	05/21/01
07	917841MS	917841MS	05210138.D	05/21/01
08	917841MSD	917841MSD	05210139.D	05/21/01
09				
10				·
11				

COMMENTS:	are.		
	-		

3 C WATER POLYNUCLEAR AROMATIC LABORATORY CONTROL SAMPLE RECOVERY

Lab Name: STAT Analysis Corporation			Contract:	ontract: Burns&McDonnell	
Lab Code:	702087	Case No.:	SAS No.:	SDG No.:	
LCS - Sample ID:		WLCS 062701	-		-

Compound	SPIKE ADDED (ug/L)	SAMPLE CONCENTRATION (ug/L)	MS CONCENTRATION (ug/L)	MS % REC #	QC LIMITS REC
Napthalene	10	0	5.39	54	30-140
Acenaphthylene	10	. 0	5.77	58	30-140
Acenaphthene	10	0	4.96	50	31-137
Fluorene	10	0	5.36	54	30-140
Phenanthrene	10	0	5.51	55	30-140
Anthracene	10	0	6.44	64	30-140
Fluoranthene	10	0	5.96	60	30-140
Pyrene	10	0	5.90	59	35-142
Benzo(a)anthracene	10	0	5.03	50	30-140
Chrysene	10	0	5.08	51	30-140
Benzo(b)fluoranthene	10	0	5.85	59	30-140
Benzo(k)fluoranthene	10	0	5.23	52	30-140
Benzo(a)pyrene	10	0	4.53	. 45	30-140
Ideno(1,2,3-cd)pyrene	10	0	3.65	37	30-140
Dibenz(a,h)anthrancene	10	0	3.68	37	30-140
Benzo(g.h,i) perylene	10	0	3.36	34	30-140

# Column to be used to flag * Values outside of QC limits Spike Recovery:			
COMMENTS:	<u></u>	-	
•		~.	
page 1 of 1		FORM III SV-2	OLM03.0

SEMIVOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.

WBLKWOI

Lab Name: STAT Analysis

Contract: Burns&McDonnell

Lab Code:

Case No.:

SDG No.:

Lab File ID:

06280119.D

SAS No.: Lab Sample ID: PNA BLANK

Instrument ID:

GC/MS-SVOC-2

Date Extracted:

06/28/01

Matrix: (soil/water)

Date Analyzed:

WATER

06/28/01

Level: (low/med)

LOW

Time Analyzed:

20:08

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	EPA	LAB	LAB	DATE
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	PNA SOIL LCS 06/28/01	PNASLCS062801	06280120.D	06/28/01
02	RPM-MW005-002	918962	06280121.D	06/28/01
03				

COMMENTS:

3/90

3 C WATER POLYNUCLEAR AROMATIC LABORATORY CONTROL SAMPLE RECOVERY

Lab Name:	STAT Analysis Con	poration	Contract	Burns & McD	onnel	
Lab Code:	702087	Case No.:	SAS No.:		SDG No.:	
LCS - Sample ID:		WLCS 062801	_			

	SPIKE	SAMPLE	MS CONCENTRATION	MS %	QC LIMITS
	ADDED	CONCENTRATION (ug/L)	(ug/L)	REC #	l .
Compound	(ug/L)	(ug/L)		† 	
Napthalene	10	0	6.34	63	30-140
Acenaphthylene	10	0	6.91	69	30-140
Acenaphthene	10	0	6.76	68	31-137
Fluorene	10	0.	6.91	69	30-140
Phenanthrene	10	0	6.47	65	30-140
Anthracene	10	0	7.53	75	30-140
Fluoranthene	10	0	6.90	69	30-140
Pyrene	10	0	6.86	69	35-142
Benzo(a)anthracene	10	0	5.79	58	30-140
Chrysene	10	0	5.96	60	30-140
Benzo(b)fluoranthene	10	0 -	5.62	56	30-140
Benzo(k)fluoranthene	10	0	6.35	64	30-140
Benzo(a)pyrene	10	0	5.78	58	30-140
Ideno(1,2,3-cd)pyrene	10	0	5.26	53	30-140
Dibenz(a,h)anthrancene	10	0	5.06	51	30-140
Benzo(g,h.i) perylene	10	0	5.25	53	30-140

# Column to	be	used	to	flag	recovery with	ı an	asterisk
-------------	----	------	----	------	---------------	------	----------

0 out of 16 outside limits

	*	
COMMENTS:		

page 1 of 1

FORM III SV-2

OLM03.0

^{*} Values outside of QC limits Spike Recovery:

STAT Analysis Corporation:

2201 West Campbell Park Drive, Chicago, Illinois 60612-3547
Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

INORGANIC Initial Batch QC

Lab Name:

STAT Analysis Corporation

Contract: Burns & McDonnell

Project No.:

27194-3.02

Instrument: ICPMS, CV, LaChat

Batch No.:

702087

Associated Samples:

					.,				Prepara	ation	
	L	CS 1 (µg/I	L)	L	CS 2 (µg/I	L)			Blan	k	
Analyte	True	Found	%R	True	Found	%R	RPD	С		С	M
Arsenic	500	469	93.8	500	458	91.5	2.4		0.02		MS
Barium	500	481	96.1	500	473	94.6	1.5		0.16		MS
Cadmium	500	483	96.7	500	476	95.2	1.6		0.01		MS
Chromium	500	483	96.6	500	475	95.0	1.7		0.05		MS
Lead	500	482	96.4	500	472	94.4	2.1		0.05		MS
Mercury	2.50	2.44	97.6	250	2.30	92.0	5.9		-001		CV
Selenium	500	463	92.7	500	448	89.6	3.4		0.00		MS
Silver	500	502	100	500	494	98.8	1.6		0.04		MS
Cyanide	250	239	95.5	250	238	95.4	0.1		-0.35		LC

2A WATER VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Lab Name:	STAT Analysis		Contract:		
I ab Code:		Case No.: 702087	SAS No.:	SDG No.:	

	EPA	SMC1	SMC2	SMC3	TOT
	SAMPLE NO.	(DBF) #	(TOL) #	(BFB) #	OUT
01	VLCS070201	95	99	98	_ 0
02	VBLK070201	98	100	98	0
03	RPM-MW001-00	108	101	99	00
04	RPM-MW001-00	108	100	98	0
05	RPM-MW001-00	107	100	97	. 0
06	RPM-MW002-00	108	101	97	0
07	RPM-MW003-00	108	100	96	0
08	RPM-MW004-00	105	100	97	. 0
09	RPM-MW005-00	108	101	96	0

QC LIMITS

SMC1	(DBF)	=	Dibromofluoromethane	(76-114)
SMC2	(TOL)	=	Toluene-d8	(88-110)
SMC3	(BFB)	=	Bromofluorobenzene	(86-115)

Column to be used to flag recovery values

^{*} Values outside of contract required QC limits

2C WATER PNA SURROGATE RECOVERY

Lab Name: _	STAT	Analysis	Cont	ract:Burns&McDonnell
Project No:			Location:	Group:

-	Sample No.	S1	S2	S3	Total Out
01	PNA WATER Blank 06/27/01	74	82	93	0
02	PNA WATER LCS 06/27/01	66	70	77	0 .
03	RPM-MW001-002	48	51	59	. 0
04	RP-MW002-002	51	55	69	0
05	RPM-MW003-002	59	67	74	0
06	RPM-MW004-002	52	57	64	0
07	917841	27	32	34	0
08	917841MS	29	33	30	0
-09	917841MSD	36	30	30	0
10					
11					
12					
13					

S1 (NBZ) = d5-Nitrobenzene S2 (FBP) = 2-Fluorobiphenyl

S3 (TPH) = Terphenyl-d14

Column to be used to flag recovery values

* Values outside of contract required QC limits

D Surrogate Diluted out

FORM II SV-2

QC LIMITS (23-120) (30-115) (18-137)

2C WATER PNA SURROGATE RECOVERY

Lab Name: _	STAT	Analysis	. !	Contract:Burns&McDoi	mell
Project No:			Location:	Group:	

	Sample No.	S1	S2	S3	Total Out
01	PNA WATER Blank 06/28/01	70	71	79	0 .
	PNA WATER LCS 06/28/01	70	71	79	0
03	RPM-MW005-002	43	45	49	0
04					
05					

QC LIMITS
S1 (NBZ) = d5-Nitrobenzene
(23-120)
S2 (FBP) = 2-Fluorobiphenyl
(30-115)
S3 (TPH) = Terphenyl-d14
(18-137)

Column to be used to flag recovery values

* Values outside of contract required QC limits

D Surrogate Diluted out

FORM II SV-2

2C SOIL PNA SURROGATE RECOVERY

Lab Name: STAT Analysis Contract: Burns&McDonnell
Project No: 702045 Site: Location: Group:

	Sample No.	S1	S2	S3	Total Out
01	PNA Soil Blank-2 06/15/01	36	40	60	0
02	PNA Soil LCS-2 06/15/01	48	60	93	0
03	RPM-SB075-001	37	49	67	0
04	RPM-SB077-001	22	36	81	0
05	RPM-SB077-002	48	62	80	0
06	RPM-SB076-001	23	34	58	0
07	RPM-SB076-002	56	67	82	0
08	RPM-SB078-001	37	51	74	0
09	RPM-SB078-002	39	50	79	0
10	RPM-SB079-001	26	49	69	0
11	RPM-SB079-002	39	48	60	0
12	RPMSB080-001	33	36	50	0
13	RPM-SB080-001D	35	45	55	0
14	RPM-SB081-001	42	60	102	0
15	RPM-SB081-001D	D	D	D	0
16	RPM-SB082-001	35	40	64	0
17	RPM-SB082-001MS	36	41	58	0
18	RPM-SB082-001MSD	34	38	53	0

QC limit

S1 (NBZ) = d5-Nitrobenzene	(23-120)
S2 (FBP) = 2-Fluorobiphenyl	(30-115)
S3 (TPH) = Terphenyl-d14	(18-137)

Column to be used to flag recovery values

D Surrogate Diluted out

^{*} Values outside of contract required QC limits

Laboratory Case Narratives

The Peoples Gas Light and Coke Company
The Rogers Park Sub-Shop
Main Parcel

June 11, 2001

Margaret Kelly
Burns & McDonnell
2601 W. 22nd Street

Oak Brook, Illinois 60523-1229

Phone: (630) 990-0300 Fax: (630) 990-0301

Re: Project Number/Name:

27194-4.07, Peoples-Rogers Park Main & East

STAT Project Number:

701808, 701817, 701824, 701830

STAT Sample Nos.:

916985, 916986, 916988, 916990, 917034, 917035, 917037, 917110

917113, 917119, 917120, 917123, 917125, 917168, 917169, 917172

917174, 917176, 917178, 917179, 917180, 917181, 917184

Date Received:

May 2 - May 4, 2001

Dear Ms. Kelly:

Enclosed are the analytical results for the above referenced project. The samples were analyzed as per the enclosed e-mail correspondence.

All analyses were performed in accordance with methods from the USEPA publication <u>Test Methods</u> for Evaluating Solid Wastes, <u>Physical/Chemical Methods</u>, SW-846, 3rd Edition, December, 1996. Specific method references are listed on the analytical report.

All analyses were performed within the established holding times, and all quality control criteria, as outlined in the method have been met. QA/QC documentation and raw data will remain on file for future reference.

Thank you for the opportunity to serve you and we look forward to working with you in the future. If you have any questions about the enclosed materials, please call me at 312-733-0551.

Sincerely,

June 22, 2001

Margaret Kelly
Burns & McDonnell
2601 W. 22nd Street
Oak Brook, Illinois 60523-1229

Phone: (630) 990-0300 Fax: (630) 990-0301

Re: Project Number/Name:

27193-3.03, Rogers Park Main

STAT Project Number:

702051

STAT Sample Nos.: 91874

918744 - 918747

Date Received:

June 15, 2001

Dear Ms. Kelly:

Enclosed are the analytical results for the above referenced project. The samples were analyzed as per the enclosed chain of custody.

All analyses were performed in accordance with methods from the USEPA publication <u>Test Methods</u> for Evaluating Solid Wastes, <u>Physical/Chemical Methods</u>, SW-846, 3rd Edition, December, 1996. Specific method references are listed on the analytical report. Results are expressed on a dry weight basis as per method protocols.

All analyses were performed within the established holding times, and all quality control criteria, as outlined in the method have been met. QA/QC documentation and raw data will remain on file for future reference.

Thank you for the opportunity to serve you and we look forward to working with you in the future. If you have any questions about the enclosed materials, please call me at 312-733-0551.

Sincerely,

June 22, 2001

Margaret Kelly
Burns & McDonnell
2601 W. 22nd Street
Oak Brook, Illinois 60523-1229

Phone: (630) 990-0300 Fax: (630) 990-0301

Re: Project Number/Name:

27194-3.02, Rogers Park Main

STAT Project Number:

702045

STAT Sample Nos.: 918691 - 918706

Date Received:

June 14, 2001

Dear Ms. Kelly:

Enclosed are the analytical results for the above referenced project. The samples were analyzed as per the enclosed chain of custody.

All analyses were performed in accordance with methods from the USEPA publication <u>Test Methods</u> for Evaluating Solid Wastes, Physical/Chemical Methods, SW-846, 3rd Edition, December, 1996. Specific method references are listed on the analytical report. Results are expressed on a dry weight basis as per method protocols.

All analyses were performed within the established holding times, and all quality control criteria, as outlined in the method have been met. QA/QC documentation and raw data will remain on file for future reference.

Thank you for the opportunity to serve you and we look forward to working with you in the future. If you have any questions about the enclosed materials, please call me at 312-733-0551.

Sincerely,

May 16, 2001

Margaret Kelly
Burns & McDonnell
2601 W. 22nd Street
Oak Brook, Illinois 60523-1229

Phone: (630) 990-0300 Fax: (630) 990-0301

Re: Project Number/Name: 27194-4.07, Peoples-Rogers Park Main & East

STAT Project Number: 701824 STAT Sample Nos.: 917101 – 917125

Date Received: May 4, 2001

Dear Ms. Kelly:

Enclosed are the analytical results for the above referenced project. The samples were analyzed as per the enclosed chain of custody.

All analyses were performed in accordance with methods from the USEPA publication <u>Test Methods</u> for Evaluating Solid Wastes, Physical/Chemical Methods, SW-846, 3rd Edition, December, 1996. Specific method references are listed on the analytical report. Where applicable results are expressed on a dry weight basis as per method protocols.

All analyses were performed within the established holding times, and all quality control criteria, as outlined in the method have been met. QA/QC documentation and raw data will remain on file for future reference.

Thank you for the opportunity to serve you and we look forward to working with you in the future. If you have any questions about the enclosed materials, please call me at 312-733-0551.

Sincerely,

May 16, 2001

Margaret Kelly
Burns & McDonnell
2601 W. 22nd Street
Oak Brook, Illinois 60523-1229

Phone: (630) 990-0300 Fax: (630) 990-0301

Re: Project Number/Name:

27194-4.07, Peoples-Rogers Park Main & East

STAT Project Number:

701830 STAT Sample Nos.:

917168 - 917196

Date Received:

May 4, 2001

Dear Ms. Kelly:

Enclosed are the analytical results for the above referenced project. The samples were analyzed as per the enclosed chain of custody.

All analyses were performed in accordance with methods from the USEPA publication <u>Test Methods</u> for Evaluating Solid Wastes, <u>Physical/Chemical Methods</u>, SW-846, 3rd Edition, December, 1996. Specific method references are listed on the analytical report. Where applicable results are expressed on a dry weight basis as per method protocols.

All analyses were performed within the established holding times, and all quality control criteria, as outlined in the method have been met. QA/QC documentation and raw data will remain on file for future reference.

Thank you for the opportunity to serve you and we look forward to working with you in the future. If you have any questions about the enclosed materials, please call me at 312-733-0551.

Sincerely,

2201 West Campbell Park Drive Chicago, Illinois 60612-3501 Tel: 312.733.0551 Fax: 312.733.2386 e-mail address: STATinfo@STATAnalysis.com AIHA accredited 10248, NVLAP accredited 101202-0.

May 4, 2001

Margaret Kelly
Burns & McDonnell
2601 W. 22nd Street
Oak Brook, Illinois 60523-1229

Phone: (630) 990-0300 Fax: (630) 990-0301

Re: Project Number/Name: 27194-4.07, Peoples-Rogers Park Main & East

STAT Project Number: 701808 STAT Sample Nos.: 916963 - 916990

Date Received: May 2, 2001

Dear Ms. Kelly:

Enclosed are the analytical results for the above referenced project. The samples were analyzed as per the enclosed chain of custody.

All analyses were performed in accordance with methods from the USEPA publication <u>Test Methods</u> for Evaluating Solid Wastes, <u>Physical/Chemical Methods</u>, SW-846, 3rd Edition, December, 1996. Specific method references are listed on the analytical report. Where applicable results are expressed on a dry weight basis as per method protocols.

All analyses were performed within the established holding times, and all quality control criteria, as outlined in the method have been met. QA/QC documentation and raw data will remain on file for future reference.

Thank you for the opportunity to serve you and we look forward to working with you in the future. If you have any questions about the enclosed materials, please call me at 312-733-0551.

Sincerely,

Craig Chawla
Project Manager

Chain of Custody Records

The Peoples Gas Light and Coke Company
The Rogers Park Sub-Shop
Main Parcel

STAT Analysis Corporation

2201 West Campbell Park Drive, Chicago, Illinois 60612-3547 Phone: (312) 733-0551 Fax: (312) 733-2386 e-mail address: STATinfo@STATAnalysis.com AIHA accredited 10248, NVLAP accredited 101202-0

AIHA AIHA STANDING ACCREDITED ACC

		Ü	CHAIN C	JF CL	OF CUSTODY RECORD	ECORD		Page : of	6
Client Name:	BULL					સ	TYPE OF ANALYSES		
Project Number:	12194-4.67								<u> </u>
Project Nar	Project Name: Velples - Rogers Park	Main + Eas	Eas.	سلب					Turnaround Time
Location/A	WASA RAISIS Chirago	<u> </u>							(davs)
Samplers: (Do	Northrip Davia Pra	wolar Ki						Result	Results Needed:
Client Sample	Sample Description	Date T	Time Omp	Grab	No. of Containers			1/5/15/61	am/nm
	RPM-SB34-DOI	5/3/01 82) C538	×	9			Remarks	Lab No.
2	BPM-5B41-001] 	020		9	メインメ		3-51	401718
4	RPM-5840-601	Q(0501		و۔	X X X X X X X X X X X X X X X X X X X		1/-0	20106
7	RM-SB40-002	3/	38. 38.		6	イー・メメメメ		18-2	2010
2	PM-5840-003	=	0011		9)	X		1,6-6	3008
و	PPM-5847-201	=	1120		9.	レインと		571	301016
	RPN-5846-001		esi.			A A A X I I I I I I I I		12-1	917107
න	RPM-5846-002	2.2	83		Ć,	Y X X X X		19-17	9000
5	RPM-SB45-001		0121		0)			3-51	9010g
0	RPM-5844-201	,2	1230		0	N N N N N N N N N N N N N N N N N N N		2-31	91016
<u> </u>	92M-5844-002	7	1240	\exists	2	NYXX III		170	11C) 6
12	(LPIN-5B43-001	17.	1245		0)	Y X X X		52	SICIP
13	RPIN-51342-001		13.40		9	イズメイ		123	91113
<u></u>	RPM-5842-002	77.3	1345		9	イベダイ		3-51	AILC16
15		7.7	1255		9	メングベ		1-0	211118
26	RPM-5851-002	7	<u> </u>	\exists	9	ベインド		3-51	911/16
	12PM-5852-001	<u></u>	202		0	イグメア		12-1	9110116
20<	KPM-5852-002		29	\exists	9	イアイメ		8-101	91016
7	KPM-SB 54-001		14.88	-	9	イイイグ		12-1	91716
2/2	RPM-6854-002	2	450	1	9	XXXX		3-51	911120
2	16/N-58/58-001		<u> </u>	-	٩	<u> </u>		2-31	191712
Relinquished	TO THE WAY TO THE TOTAL PARTY OF THE PARTY O	Ď	Date/Time:	10	7		ine Veri	Contact Information:	iation:
Received by: (Signature)	Received by: (Signature) (AUM) AND Belinamished by: (Signature)			0747			ΣŢ	Phone Number: (20-780-050)	70-0300
Received for	Received for lab by: (Signature)	DO	Date/Time:	(a)	080)	- Samples Learning - Refillerated (Temp: "C). Ves.		Fax Number: (656-470-030)	410-03CI
Relinquished	Relinquished by: (Signature)	Di	Date/Time:		STREET COMMERCIAL DATE OF THE PROPERTY.	le Sample ID	Σ		OCHON T
)							31	The second secon

STAT Analysis Corporation

2201 West Campbell Park Drive, Chicago, Illinois 60612-3547 Phone: (312) 733-0551 Fax: (312) 733-2386 e-mail address: STATinfo@STATAnabsis.com AIHA accredited 10248, NVLAP accredited 101202-0

CHAIN OF CUSTODY RECORD

Environmental Load and Industrial Hygione ACCREDITED LABORATORY

Nº. 70824

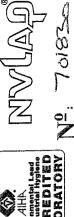
of

(days) Turnaround Time: am pm Lab No 90122 かじら PITES 5006 Phone Number 630-446 - 0300 Results Needed: Attention: M. K.elley NOCHEC Contact Information: 511510 121-0 Remarks Other Contact: | 8-101 2-7 3-5 TYPE OF ANALYSES Ves Sample Labels Match Sample ID Refrigerated (Temp: Samples Lenking Container OK Lab. Use: Containers 2= Date/Time: 5/4/(0) 12=0 No. of 0 Date/Time: Sry . p. 1 Date/Time > ///O/ Crab Comp Date/Time: Date/Time: Meio in Rawlock 1510 Taken 込 (2) Time 5/301/1455 580 Taken Date Chirago, 1C Pork BUSINS of McDonnel Samplers: Libor Northrip Duria (apers Sample Description SB53-002 RPW-5858-003 200-8585-MAD PPM-5853-00 Location/Address: (2054 Ked zie 27194 Project Name: (Penoles-Received for lab by: (Signature) Relinquished by: (Signature) Relinquished by: (Signature) Relinquished by: (Signature) Received by: (Signature) 200 Project Number: Client Name: Client Sample N a)

STATE Analysis Corporation

2201 West Campbell Park Drive, Chicago, Illinois 60612-3547 Phone: (312) 733-0551 Fax: (312) 733-238 e-mail address: STATinfo@STATAnalysis.com AIHA accredited 10248, NVLAP accredited 101202-0

	Nº: 701829
AIHA Environmental Lead and Industrial Nystene	ACCREDITED LABORATORY
98	


SIJE B Fax Number (C20 CPO-0.30)
Attention: M. K. 21 (E4) (days) Turnaround Time: Phone Number (430 FAC-US azy/pm Lab No. ころころろ 15年-2024-6 Results Needed: Contact Information: O. 5/16/01 Remarks Other Contact: Ž Page : TYPE OF ANALYSES 22 ウ 「wantain) 3 Ves 🖳 Sa X Ó, Sample Labels Match Sample ID - Refrigerated (Temp: Samples Leaking - Container Of CHAIN OF CUSTODY RECORD Lab. Use: No. of Containers Date/Time: 5-4-01 1600 Date/Time: SHO 1745 Date/Time;5/4/10/1 1000 Gas-Peners Walking-East Grab Comp Date/Time: Date/Time: Time Taken Unicarao II 540I Date Taken N Choche L Sample Description PM - 624 - 624 100 tale Samplers: LIDO NOCHANIO Relinquished by: (Signature) KUD BULLS Location/Address:(がしらり Received for lab by: (Signature) Relinquished by: (Signature) Relinquished by: (Signature) Received by: (Signature) Project Number: Project Name: Ұ Client Name: Client Sample

STAT Analysis Corporation

2201 West Campbell Park Drive, Chicago, Illinois 60612-3547 Phone: (312) 733-0551 Fax: (312) 733-2386 e-mail address: STATinfo@STATAnalysis.com AIHA accredited 10248, NVLAP accredited 101202-0

CHAIN OF CUSTODY RECORD

Environmental Lead and Industrial Hygions ACCREDITED LABORATORY

(days) 401016 Furnaround Time: 21168 911118 321116 91116 28106 381116 Fax Number (135 - 420 - 030) 9000 917176 121116 SULL OF 2010 91718 381116 am/pm 91116 1811 E ことに 9003 SIC18 L. Natitivité 411134 18116 Lab No. Results Needed: Attention: M. Kelley Contact Information: o. Remarks Other Contact: 3-5 01-8 110 in h U 60 2-31 01-8 5 01-8 1 N 11-0 11-0 8-101 12 1 2-2 is 5 5-3 R ĊĹ TYPE OF ANALYSES 22 0) - OR 8 8 S Ö Sample Labels Match Sample ID - Refrigerated (Temp: Samples Leaking - Container OK 0077 JH011745 Containers No. of Q 3 ٩ 0 Û 9 9 ٨ Q 0 Tast Tast Date/Time: 5/4/か/ 6 X V X ¥ X Grab Х Date/Time: 3~L Pravilouty Main # Comp Date/Time: Date/Time: Date/Time: 0840 0840 Ollo ST4101 08 X 240 0KB 08.35 Suloilouso 5/4/01 M30 0805 5/4/01/D300 Stylolloggo 5610 101H 8 5/4/6/10146 5/4/0/0/145 5/4/01/10/2000 0380 Taken STULOPIE 5/4/0/0750 5/4/01/08PS 5/4/6/1/5/33 15 S Time 5/4/01 5/40 5/4/01 10/1/15 5|4|Di अधिव Taken Park Daria Mc Donnell - 003 5KG 6-00S 3305 51650 - 004 603 PODIPS (1005 - DOGENS ませ 1 56 48-00 F00-6/18-Wd 100-5855-001 SBSS-007 -003 100-SR48-001 5656 ONZ SBS1-003 RPIN-5850-02 - 200-hest-002 15510-100 5650-001 ロナーカーフの PM-5857-001 Sample Description PM-5854-001 いののと VM-5857--9898-Notesta Notesta SOB SRYG 5850 (259 بل BUNNS /WW/ LOM-Received for lab by: (Signature) SPINI SON UPM-RVIN Relinquished by: (Signature) 100 2 RPM NA pr Relinquished by: (Signature) RPM. Relinquished by: (Signature) RIPM RPM Cibbu RPM Received by: (Signature) .ocation/Address: Project Number: Project Name: Client Name: Client Sample Samplers: 0 2 00 C S 5 4 Ć, S 7 5 J 3 7 No.: 7

STATE Analysis Corporation

2201 West Campbell Park Drive, Chicago, Illinois 60612-3547 Phone: (312) 733-0551 Fax: (312) 733-2386 e-mail address: STATinfo@STATAnalysis.com AIHA accredited 10248, NVLAP accredited 101202-0

ACCREDITED
LABORATORY

NO: 70/836

EDULYS & McDongell EESE: 27/94 -4.07 ET 19
RPM-MW01-DOI RPM-MW01-DOI

Analysis Corporation

2201 West Campbell Park Drive, Chicago, Illinois 60612-3547 Phone: (312) 733-0551 Fax: (312) 733-2386 e-mail address: STATinfo@STATAnalysis.com AIHA accredited 10248, NVLAP accredited 101202-0

Strolad (days) Turnaround Time: am/pm 72811 918716 SH8116 418744 Results Needed: Contact Information: Nº: 702051 Standone Remarks Attention: Phone Number: Other Contact: TA TYPE OF ANALYSES Sample Labels Match Sample ID - Refrigerated (Temp: Samples I calling Container OK CHAIN OF CUSTODY RECORD Lab. User Date/Time: (2/15/c) 1600 Containers No. of 12/01 Grab Date/Time: 60/ Date/Time: Date/Time: Date/Time: (9.4C) 8 6/15W 0855 Taken 0 Taken 10000 KPM-58083-002 RAM-50083-00 RPM-51271-00 Sample Description PPINI-JAND-00 TANCE DIC in Nichuls, Received for lab by: (Signature) Relinquished by: (Signature) Relinquished by: (Signature) Relinquished by: (Signature) でから Received by: (Signature) Location/Address: Project Number: Project Name: Client Name: Client Sample Samplers:

STAT Analysis Corporation

Samplers:

Environmental Lead and Industrial Hygiene ACCREDITED LABORATORY

Phone Number: (50-790-0504 201812 STANDARD (days) હાજીક ક Jel 872 Turnaround Time: 918696 918700 218204 906816 BOB) B 19681P 500216 STAVOYON am/pm MEBBLE 2663 250037 918195 4(8697) Nº: 702045 1880 J Lab No. Results Needed: Second Services Contact Information: <u>o</u> Fax Number 630~ Remarks Attention: Page TYPE OF ANALYSES The state of the s 8 8 2201 West Campbell Park Drive, Chicago, Illinois 60612-3547 Phone: (312) 733-0551 Fax: (312) 733-2386 -Samples Leaking -Refrigerated (Temp: e-mail address: STATinfo@STATAnalysis.com AIHA accredited 10248, NVLAP accredited 101202-0 Container OK CHAIN OF CUSTODY RECORD Lab, Use: Containers Date/Time: Clf4101 1740 No. of Grab Comp Date/Time: Date/Time: Date/Time: DON TO 36 240 R (4)20° 140 Sec റയ്യ 一切の Taken GAS 15×5 **多** (9/14/04) Date Taken edzin And IMNICHUS, Diane McDons 1,00% 98-19-00 - NOV LPM-58080 — 20J PM - 518082-00 KPM-58074-001 Sample Description RAN-SCABLOOL CPM-58076-002 PM-5BU77-003 20M -33018-002 KPM-SBOBI-001 CHM-512676-00 RPM-SB677-00 -5BD78-001 RPM-5P5-13-00 RPM-5125-00 RPM-5B071-00) 100 - 5102-001 7525 CO17 Location/Addalessily F79 files K Received for lab by: (Signature) Relinquished by: (Signature) Relinquished by: (Signature) Project Number: ROW Received by: (Signature) Project Name: Client Name: 7 Client Sample

Other Contact:

Sample Labels Match Sample ID

Date/Time:

Relinguished by: (Signature)

STAT Analysis Corporation

2201 West Campbell Park Drive, Chicago, Illinois 60612-3547 Phone: (312) 733-0551 Fax: (312) 733-2386 e-mail address: <u>STATinfo@STATAnahysis.com</u> AIHA accredited 10248, NVLAP accredited 101202-0

ACCREDITED

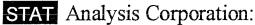
LABORATORY

NO. 703087

		ر	CHAIN	JE CTI	STODY	OE CHSTODY BECORD		Dona C	, ,
	C	اد			10010	NECOM		rage : 01	
Client Name:	XIMS & IM						TYPE OF ANALYSES	YSES	····
Project Number:	ner: 27/44-6.02								
Project Name	Project Name: RUSUS PUK MAIN							1///Shan	Innavery of Thine:
Location/Address:	ress: 6659 NKedzie, C	MICAGO 1	2		-				(days)
Samplers: k	Cim Nichols, Ivan Williams	lounden				人人など		Results	Results Needed:
Client Sample	Sample Description		Time Taken	dsit	No. of			Chabo1/	am/pm
	Ond who from		-		Contamiers			Remarks	Lab No.
	NIM -MMDD -002	11 10/6.2/m	80 5	4>	1			HND2 rached	256116
	KFIM-MW002-DOS	0)	2/5	*	4			Change to crarge	418017
	WEIN-MWUD3-BO J	9	0142	X	Н	XXXX		Samo gas say	918400
	RPIM-MWOV4-CD-2		1335	X	H	XXXX		Color Mas Fall	196816
2	RPM-MIMBOS-002	0	0750	X	Н			thomas woodliting	d18962
Ŋ								For hi WOI, MWOZ	
								AWINDA. 1CAL	
/									
	/	\int							
			/						
					/				
	The second secon								
:								0/80/1	
								NAIN	
				_				7_	/
Relinquished by: (Signature)	leading fitting		Date/Time: 6	ifeel	1416	Lah, User		Contact Information:	tion:
Received by: (Signature) Relinguished by: (Signature)	Ignature) DA (701/2027)		Date/Time:	0	2-01	Container OK	T	Phone Number: 62, 94/0-030	10-02C
Received for lab by: (Signature)	by: (Signature) Thun, 1012			6120	1 (700	Refrigerated (Temp:C)		Attention: Marcaul Kulle	out Kulled
Relinguished by: (Signature)	(Signature)	Q	Date/Time:			- Sample Labels Match Sample ID	Yes 🖊 🗀	Other Contact: KIM	INMICKUS "
								•	

| Analysis Corporation

2201 West Campbell Park Drive, Chicago, Illinois 60612-3547 Phone: (312) 733-0551 Fax: (312) 733-2386 e-mail address: STATinfo@STATAnalysis.com AIHA accredited 10248, NVLAP accredited 101202-0


Environmental Lead and Industrial Hygiens ACCREDITED LABORATORY

€

716976 916980 Phone Number: (630-490-0300 (days) 51169183 2525 916978 216979 785418 Turnaround Time: amom 9169163 496916 916970 416916 716973 4(63)6 Fax Number (650 -490-03x) 9/69/6 916969 Other Contact: L. Northin 716965 185915 716868 1810 916367 16916 Lab No. Results Needed: Attention: M. Kelley Nº, 701808 Contact Information: of 10/60/5 Remarks 20 7-31 070 15'0-0 15:0-0 8-10 170 7-3 1-50 1-50 12-12-1 12-1 , 8-2 5-7 3 D-5-0 5 2-3 イン 3-4 TYPE OF ANALYSES Sample Verification ź ŝ ž ス Keer Yes X es Ç, Sample Labels Match Sample ID - Refrigerated (Temp: Samples Leaking · Container OK 7 CHAIN OF CUSTODY RECORD Lab. Use: $\overline{\mathcal{A}}$ 7 イ JARO 738 Containers 9 و 9 0 d J 9 9 Date/Time: 5/2/01 12/2/ Date/Time: 5つがり Grab $Date/Time: S_{\mu}$ Comp Date/Time: 02/20 2825 2840 0940 05,50 8 080 25 1325 326 415 425 233 2815 2835 88 25 0/0 315 Taken 8 100 7107017 Taken 5/0/ Date BUK Kim Burns & McDonne 2 5827-203 RPM-5826-003 "paecs RPM-5825-002 RPM-5B26-002 RPN-5827-002 Sample Description RPM-5826-001 RPM-5B22-005 RPM-5824-002 RPM-5824-003 RPM-5827-00 Project Number: 27194 - 4.0NECTACIO 2PM-5B22-003 RPM-5822-004 RPM-5825-001 RPM-58:24-001 RPM-SB23-006 PM-5822-002 RPM-5823-003 8 RPM-5823-004 RPM-5B23-002 RPM-5823-001 Location/Address:(do59 Led2) RPM-5822-Project Name: (Peoples-Received for lab by: (Signature) CPIM-Relinquished by: (Signature) Relinquished by: (Signature) Relinquished by: (Signature) TCHI Received by: (Signature) Client Name: Client Sample Samplers: 3 $\tilde{\omega}$ φ ~ 2 2 0 三 ă \wp 00/2 3 Ø و (J

Previous Investigation Data

The Peoples Gas Light and Coke Company
The Rogers Park Sub-Shop
Main Parcel

2201 West Campbell Park Drive, Chicago, Illinois 60612-3547 Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

Analytical Report

Client:

Roy F. Weston

Project ID:

10512 004 004, Peoples Gas

Date Received: Date Taken:

7/14/00

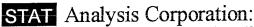
Sample Number:

B6, 6-8

Time Taken:

7/13/00

STAT Project No.: 700735


14:00

STAT Sample No.: 908324

Date Reported:

Analyte	Detection Limit	Result	Units
Solids, Total		82.94	%
Volatile Organic Compound Analysis Date: 7/19/00	s Method 5035/8260B		

Volatile Organic Compounds Me	ethod 5035/8260B		
Analysis Date: 7/19/00			_
Acetone	0.025	< 0.025 V	mg/Kg
Benzene	0.005	0.015 🖔	mg/Kg
Bromodichloromethane	0.005	< 0.005 U) mg/Kg
Bromoform	0.005	< 0.005	mg/Kg
Bromomethane	0.010	< 0.010	mg/Kg
2-Butanone	0.010	< 0.010	mg/Kg
Carbon Disulfide	0.005	< 0.005	mg/Kg
Carbon Tetrachloride	0.005	< 0.005	mg/Kg
Chlorobenzene	0.005	< 0.005	mg/Kg
Chlorodibromomethane	0.005	< 0.005	mg/Kg
Chloroethane	0.010	< 0.010	mg/Kg
Chloroform	0.005	< 0.005	mg/Kg
Chloromethane	0.010	< 0.010	mg/Kg
1,1-Dichloroethane	0.005	< 0.005	mg/Kg
1,2-Dichloroethane	0.005	< 0.005	mg/Kg
1,1-Dichloroethene	0.005	< 0.005	mg/Kg
cis-1,2-Dichloroethene	0.005	< 0.005	mg/Kg
trans-1,2-Dichloroethene	0.005	< 0.005	mg/Kg
1,2-Dichloropropane	0.005	< 0.005	mg/Kg
cis-1,3-Dichloropropene	0.005	< 0.005	mg/Kg
trans-1,3-Dichloropropene	0.005	< 0.005	mg/Kg
Ethyl Benzene	0.005	< 0.005	mg/Kg
2-Hexanone	0.010	< 0.010	mg/Kg
4-Methyl-2-pentanone	0.010	< 0.010	mg/Kg
Methylene Chloride	0.010	< 0.010	mg/Kg
Styrene	0.005	< 0.005	mg/Kg
1,1,2,2-Tetrachloroethane	0.005	< 0.005	mg/Kg
Tetrachloroethene	0,005	< 0.005	_ mg/Kg
Toluene	0.005	< 0.005 VC) mg/Kg

2201 West Campbell Park Drive, Chicago, Illinois 60612-3547 Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

Analytical Report

Client:

Roy F. Weston

Project ID:

10512 004 004, Peoples Gas

Date Received: Date Taken:

7/14/00

Sample Number:

B6, 6-8

Time Taken

7/13/00 14:00

STAT Project No.: 700735

STAT Sample No.: 908324

Date Reported:

< 0.330 ⁽¹⁾ mg/Kg

< 0.330

< 0.330

< 0.330

< 0.330

< 0.330V)

Units

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

7/25/00

Analyte	Detection Limit	Result
1,1,1-Trichloroethane	0.005	< 0.005 ⁽⁵⁾
1,1,2-Trichloroethane	0.005	< 0.005
Trichloroethene	0.005	< 0.005

1,1,2-Trichloroethane	0.005	< 0.005	mg/Kg
Trichloroethene	0.005	< 0.005	mg/Kg
Vinyl Acetate	0.010	< 0.010	mg/Kg
Vinyl Chloride	0.010	< 0.010 ×	mg/Kg
Xylenes (total)	0.005	< 0.005 vJ	mg/Kg

0.330

0.330 0.330

0.330

Base-Neutral/Acid Compounds Method 8270C

Preparation Date:

Benzidine

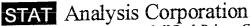
2-Chlorophenol

Chrysene

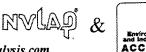
4-Chlorophenyl-phenylether

7/19/00

P	
Analysis Date:	7/20/00
Acenaphthene	
Acenaphthylene	
Anthracene	


Benzo[a]anthracene	0.330	< 0.330	mg/Kg
Benzo[b]fluoranthene	0.330	< 0.330	mg/Kg
Benzo[k]fluoranthene	0.330	< 0.330	mg/Kg
Benzo[g,h,i]perylene	0.330	< 0.330	mg/Kg
Benzo[a]pyrene	0.330	< 0.330	mg/Kg
Benzoic Acid	0.330	< 0.330	mg/Kg
Benzyl alcohol	0.330	< 0.330	mg/Kg
bis(2-Chloroethoxy)methane	0.330	< 0.330	mg/Kg
bis(2-Chloroethyl)ether	0.330	< 0.330	mg/Kg

Dis(2-Ciliordeniyi)etilei	0,330	< 0.550 l	mg/Kg
bis(2-Chloroisopropyl)ether	0.330	< 0.330	mg/Kg
bis(2-Ethylhexyl)phthalate	0.330	< 0.330	mg/Kg
4-Bromophenyl-phenylether	0.330	< 0.330	mg/Kg
Butylbenzylphthalate	0.330	< 0.330	mg/Kg
4-Chloroaniline	0.330	< 0.330	mg/Kg
4-Chloro-3-methylphenol	0.330	< 0.330	mg/Kg
2-Chloronaphthalene	0.330	< 0.330	mg/Kg


0.330

0.330

0.330

STAT Analysis Corporation:
2201 West Campbell Park Drive, Chicago, Illinois 60612-3547 Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

Analytical Report

Client

Roy F. Weston

Project ID:

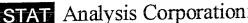
10512 004 004, Peoples Gas

Sample Number:

B6, 6-8

STAT Project No.: 700735

STAT Sample No.: 908324


Date Received:

7/14/00

Date Taken: Time Taken: 7/13/00 14:00

Date Reported:

Analyte	Detection Limit	Result	Units
Dibenz[a,h]anthracene	0.330	< 0.330 ⁽⁵⁾	mg/Kg
Dibenzofuran	0.330	< 0.330	mg/Kg
1,2-Dichlorobenzene	0330	< 0.330	mg/Kg
1,3-Dichlorobenzene	0.330	< 0.330	mg/Kg
1,4-Dichlorobenzene	0.330	< 0.330	mg/Kg
3,3'-Dichlorobenzidine	0,660	< 0.660	mg/Kg
2,4-Dichlorophenol	0.330	< 0.330	mg/Kg
Diethylphthalate	0.330	< 0.330	mg/Kg
2,4-Dimethylphenol	0.330	< 0.330	mg/Kg
Dimethylphthalate	0.330	< 0.330	mg/Kg
Di-n-butylphthalate	0.330	< 0.330	mg/Kg
4,6-Dinitro-2-methylphenol	160	< 1.60	mg/Kg
2,4-Dinitrophenol	1.60	< 1.60	mg/Kg
2,4-Dinitrotoluene	0.330	< 0.330	mg/Kg
2,6-Dinitrotoluene	0.330	< 0.330	mg/Kg
Di-n-octylphthalate	0.330	< 0.330	mg/Kg
Fluoranthene	0.330	< 0.330	mg/Kg
Fluorene	0.330	< 0.330	mg/Kg
Hexachlorobenzene	0.330	< 0.330	mg/Kg
Hexachlorobutadiene	0.330	< 0.330	mg/Kg
Hexachlorocyclopentadiene	0.330	< 0.330	mg/Kg
Hexachloroethane	0.330	< 0.330	mg/Kg
Indeno[1,2,3-cd]pyrene	0.330	< 0.330	mg/Kg
Isophorone	0.330	< 0.330	mg/Kg
2-Methylnaphthalene	0.330	< 0.330	mg/Kg
2-Methylphenol	0,330	< 0.330	mg/Kg
3&4-Methylphenol	0.330	< 0.330	mg/Kg
Naphthalene	0.330	< 0.330	mg/Kg
2-Nitroaniline	1.60	< 1.60	mg/Kg
3-Nitroaniline	1.60	< 1.60	mg/Kg
4-Nitroaniline	160	< 1.60	mg/Kg
Nitrobenzene	0.330-	< 0.330	mg/Kg
2-Nitrophenol	1,60	< 1.60 V	mg/Kg

STAT Analysis Corporation:
2201 West Campbell Park Drive, Chicago, Illinois 60612-3547 Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

Analytical Report

Client:

Roy F. Weston

Project ID:

10512 004 004, Peoples Gas

Date Received: Date Taken:

7/14/00

Sample Number:

B6, 6-8

Time Taken:

7/13/00

STAT Project No.: 700735

14:00

STAT Sample No: 908324

Date Reported

Analyte	Detection Limit	Result	Units
4-Nitrophenol	1.60	< 1.60	mg/Kg
N-Nitrosodimethylamine	0.330	< 0.330 ∫	mg/Kg
N-Nitroso-di-n-propylamine	0.330	< 0.330	mg/Kg
n-Nitrosodiphenylamine	0.330	< 0.330	mg/Kg
Pentachlorophenol	1,60	< 1.60	mg/Kg
Phenanthrene	0.330	< 0.330	mg/Kg
Phenol	0.330	< 0.330	mg/Kg
Pyrene	0.330	< 0.330	mg/Kg
1,2,4-Trichlorobenzene	0.330	< 0.330	mg/Kg
2,4,5-Trichlorophenol	0.660	< 0.660	mg/Kg
2,4,6-Trichlorophenol	0.330	< 0.330 V	mg/Kg

Attn: Mr. Kevin Axe

Date: Friday July 21st, 2000

RE: B6 6-8 Project # 10512-004-004-9999 Lab ID: 9A07G130-013 Sample Date: 07/13/00 Date Received: 07/14/00

Inorganic Data Report

Parameters	Result	Units	Reporting Limit
рН	7.9	pH@20,2	+-0.20

Attn: Mr. Kevin Axe

Date: Friday July 28th, 2000

RE: B6 6-8

Project # 10512-004-004-9999 Lab ID: **9A07G130-013** Sample Date: 07/13/00 Date Received: 07/14/00

Metals Data Report

Parameters	Result		Units	Reporting Limit
% Solids	85.1		%	0.10
Silver, Total	0 . 47	u	mg/kg	0.47
Aluminum, Total	7970		mg/kg	18.8
Arsenic, Total	8.2		mg/kg	0.94
Barium, Total	27.2		mg/kg	0.94
Beryllium, Total	0.49		mg/kg	0.38
Calcium, Total	56300		mg/kg	9.4
Cadmium, Total	0.37		mg/kg	0.19
Cobalt, Total	91.4		mg/kg	5.0
Chromium, Total	14.2		mg/kg	0.94
Copper, Total	34.4		mg/kg	0.94
Iron, Total	19500		mg/kg	4.7
Mercury, Total	0.04	u	mg/kg	0.04
Potassium, Total	2950		mg/kg	47.0
Magnesium, Total	32600		mg/kg	9.4
Manganese, Total	398		mg/kg	0.47
Sodium, Total	182		mg/kg	94.0

Attn: Mr. Kevin Axe

Date: Friday July 28th, 2000

RE: B6 6-8

Project # 10512-004-004-9999 Lab ID: **9A07G130-013** Sample Date: 07/13/00 Date Received: 07/14/00

Metals Data Report

Parameters	Result		Units	Reporting Limit
Nickel, Total	27.2		mg/kg	0.94
Lead, Total	13.3		mg/kg	0.47
Antimony, Total	1.9	u	mg/kg	1.9
Selenium, Total	0.47	u	mg/kg	0.47
Thallium, Total	0.94	u	mg/kg	0.94
Vanadium, Total	16.6		mg/kg	0.47
Zinc, Total	43.2		mg/kg	0.94

Attn: Mr. Kevin Axe

Date: Friday July 28th, 2000

RE: **B6 6-8**

Project # 10512-004-004-9999 Lab ID: **9A07G130-014** Sample Date: 07/13/00 Date Received: 07/14/00

SPLP Leachate Analysis Report

Parameters	Result	Units	Reporting Limit
Chromium, SPLP	0.050 u	mg/L	0.050
Lead, SPLP	0.0075 u	mg/L	0.0075

Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

Analytical Report

Client:

Roy F. Weston

Project ID:

10512 004 004, Peoples Gas

Sample Number:

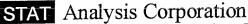
SS07, 0-2

STAT Sample No.: 908329

STAT Project No.: 700735

Date Received:

7/14/00


Date Taken

7/13/00 14:15

Time Taken: Date Reported:

Analyte	Detection Limit	Result	Units
Solids, Total		68 13	%

Solids, Total		00,15	70
Volatile Organic Compounds Method Analysis Date 7/19/00	5035/8260B		
Acetone	0.025	< 0.025	mg/Kg
Benzene	0.005	< 0.005	mg/Kg
Bromodichloromethane	0.005	< 0.005	mg/Kg
Bromoform	0.005	< 0.005	mg/Kg
Bromomethane	0.010	< 0.010	mg/Kg
2-Butanone	0.010	< 0.010	mg/Kg
Carbon Disulfide	0.005	< 0.005	mg/Kg
Carbon Tetrachloride	0.005	< 0.005	mg/Kg
Chlorobenzene	0005	< 0.005	mg/Kg
Chlorodibromomethane	0.005	< 0.005	mg/Kg
Chloroethane	0.010	< 0.010	mg/Kg
Chloroform	0.005	< 0.005	mg/Kg
Chloromethane	0.010	< 0.010	mg/Kg
1,1-Dichloroethane	0.005	< 0.005	mg/Kg
1,2-Dichloroethane	0.005	< 0.005	mg/Kg
1,1-Dichloroethene	0.005	< 0.005	mg/Kg
cis-1,2-Dichloroethene	0.005	< 0.005	mg/Kg
trans-1,2-Dichloroethene	0.005	< 0.005	mg/Kg
1,2-Dichloropropane	0.005	< 0.005	mg/Kg
cis-1,3-Dichloropropene	0.005	< 0.005	mg/Kg
trans-1,3-Dichloropropene	0.005	< 0.005	mg/Kg
Ethyl Benzene	0.005	< 0.005	mg/Kg
2-Hexanone	0.010	< 0.010	mg/Kg
4-Methyl-2-pentanone	0.010	< 0.010	mg/Kg
Methylene Chloride	0.010	< 0.010	mg/Kg
Styrene	0.005	< 0.005	mg/Kg
1,1,2,2-Tetrachloroethane	0.005	< 0.005	mg/Kg
Tetrachloroethene	0.005	_ < 0.005	mg/Kg
Toluene	0.005	< 0.005	mg/Kg

STAT Analysis Corporation:
2201 West Campbell Park Drive, Chicago, Illinois 60612-3547 Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

Analytical Report

Client:

Roy F. Weston

Project ID:

10512 004 004, Peoples Gas

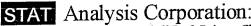
Date Received: Date Taken:

7/14/00

Sample Number:

SS07, 0-2

7/13/00 14:15


STAT Project No.: 700735

Time Taken Date Reported:

STAT	Sample	Nou	908329

Analyte	~ ·	Detection Limit	Result	Units
1,1,1-Trichloroeth	ane	0.005	< 0.005	mg/Kg
1,1,2-Trichloroeth		0.005	< 0.005	mg/Kg
Trichloroethene		0.005	< 0.005	mg/Kg
Vinyl Acetate		0.010	< 0.010	mg/Kg
Vinyl Chloride		0.010	< 0.010	mg/Kg
Xylenes (total)		0.005	< 0.005	mg/Kg
Base-Neutral/Acie	d Compounds Met	thod 8270C		
Preparation Date:	7/19/00			
Analysis Date:	7/20/00, 7/21/00			
Acenaphthene		0.330	1.19 5	mg/Kg
Acenaphthylene		0.330	< 0.330	mg/Kg
Anthracene		0.330	7.99	mg/Kg
Benzidine		0.330	< 0.330	mg/Kg
		0.000	10.2	

Preparation Date: 7/19/00			
Analysis Date: 7/20/00, 7/21/00		-4	
Acenaphthene	0.330	1.19 J	mg/Kg
Acenaphthylene	0.330	< 0.330	mg/Kg
Anthracene	0.330	7.99	mg/Kg
Benzidine	0.330	< 0.330	mg/Kg
Benzo[a]anthracene	0.330	19.3	mg/Kg
Benzo[b]fluoranthene	0.330	6.21	mg/Kg
Benzo[k]fluoranthene	0.330	4.71	mg/Kg
Benzo[g,h,i]perylene	0.330	4,60	mg/Kg
Benzo[a]pyrene	0.330	4.47	mg/Kg
Benzoic Acid	0.330	< 0.330	mg/Kg
Benzyl alcohol	0.330	< 0.330	mg/Kg
bis(2-Chloroethoxy)methane	0.330	< 0.330	mg/Kg
bis(2-Chloroethyl)ether	0.330	< 0.330	mg/Kg
bis(2-Chloroisopropyl)ether	0.330	< 0.330	mg/Kg
bis(2-Ethylhexyl)phthalate	0.330	< 0.330	mg/Kg
4-Bromophenyl-phenylether	0.330	< 0.330	mg/Kg
Butylbenzylphthalate	0.330	< 0.330	mg/Kg
4-Chloroaniline	0.330	< 0.330	mg/Kg
4-Chloro-3-methylphenol	0.330	< 0.330	mg/Kg
2-Chloronaphthalene	0.330	< 0.330	mg/Kg
2-Chlorophenol	0.330	< 0.330 U	mg/Kg
4-Chlorophenyl-phenylether	0.330	< 0.330	mg/Kg
Chrysene	0.330	18.9	mg/Kg

STAT Analysis Corporation:
2201 West Campbell Park Drive, Chicago, Illinois 60612-3547 Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

Analytical Report

Client

Roy F. Weston

Project ID:

10512 004 004, Peoples Gas

Sample Number:

SS07, 0-2

STAT Project No.: 700735

STAT Sample No.: 908329

Date Received:

7/14/00

Date Taken:

7/13/00

Time Taken:

14:15

Date Reported

Analyte	Detection Limit	Result	Units
Dibenz[a,h]anthracene	0.330	0.742	mg/Kg
Dibenzofuran	0.330	0.405	mg/Kg
1,2-Dichlorobenzene	0.330	< 0.330	mg/Kg
1,3-Dichlorobenzene	0.330	< 0.330	mg/Kg
1,4-Dichlorobenzene	0.330	< 0.330 JZ	mg/Kg
3,3'-Dichlorobenzidine	0.660	< 0.660	mg/Kg
2,4-Dichlorophenol	0.330	< 0.330	mg/Kg
Diethylphthalate	0.330	< 0.330	mg/Kg
2,4-Dimethylphenol	0.330	< 0.330	mg/Kg
Dimethylphthalate	0.330	< 0.330	mg/Kg
Di-n-butylphthalate	0.330	< 0.330	mg/Kg
4,6-Dinitro-2-methylphenol	1.60	< 1.60	mg/Kg
2,4-Dinitrophenol	160	< 1.60	mg/Kg
2,4-Dinitrotoluene	0.330	< 0.330	mg/Kg
2,6-Dinitrotoluene	0.330	< 0.330	mg/Kg
Di-n-octylphthalate	0.330	< 0.330	mg/Kg
Fluoranthene	0.330	53.6	mg/Kg
Fluorene	0.330	1.99	mg/Kg
Hexachlorobenzene	0.330	< 0.330	mg/Kg
Hexachlorobutadiene	0.330	< 0.330	mg/Kg
Hexachlorocyclopentadiene	0.330	< 0.330 VJ	mg/Kg
Hexachloroethane	0.330	< 0.330	mg/Kg
Indeno[1,2,3-cd]pyrene	0.330	3.74	mg/Kg
Isophorone	0.330	< 0.330	mg/Kg
2-Methylnaphthalene	0.330	< 0.330	mg/Kg
2-Methylphenol	0.330	حران 0.330 ×	
3&4-Methylphenol	0.330	< 0.330	mg/Kg
Naphthalene	0.330	< 0.330	mg/Kg
2-Nitroaniline	1.60	< 1.60	mg/Kg
3-Nitroaniline	160	< 1.60	mg/Kg
4-Nitroaniline	1.60	< 11.60	mg/Kg
Nitrobenzene	0.330	< 0.330	mg/Kg
2-Nitrophenol	1.60	< 1.60	mg/Kg

Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

Analytical Report

Client

Roy F. Weston

Project ID:

10512 004 004, Peoples Gas

Date Received:

7/14/00

Sample Number:

SS07, 0-2

Date Taken:

7/13/00

Time Taken:

14:15

STAT Project No.: 700735 STAT Sample No.: 908329

Date Reported:

Analyte	Detection Limit	Result	Units
4-Nitrophenol	1.60	< 1.60	mg/Kg
N-Nitrosodimethylamine	0.330	< 0.330	_ mg/Kg
N-Nitroso-di-n-propylamine	0.330	< 0.330 ^{bC}	mg/Kg
n-Nitrosodiphenylamine	0.330	< 0.330	mg/Kg
Pentachlorophenol	1.60	< 1.60	mg/Kg
Phenanthrene	0.330	22.1	mg/Kg
Phenol	0.330	< 0.330	mg/Kg
Pyrene	0.330	41.3	mg/Kg
1,2,4-Trichlorobenzene	0.330	< 0.330 V	mg/Kg
2,4,5-Trichlorophenol	0.660	< 0.660	mg/Kg
2,4,6-Trichlorophenol	0.330	< 0.330	mg/Kg

Attn: Mr. Kevin Axe

Date: Friday July 21st, 2000

RE: SS07 0-2 Project # 10512-004-004-9999 Lab ID: 9A07G130-025 Sample Date: 07/13/00 Date Received: 07/14/00

Inorganic Data Report

Parameters	Result	Units	Reporting Limit
рН	7.5	pH@20.6	+-0.20

Attn: Mr. Kevin Axe

Date: Friday July 28th, 2000

RE: SS07 0-2 Project # 10512-004-004-9999 Lab ID: 9A07G130-025 Sample Date: 07/13/00 Date Received: 07/14/00

Metals Data Report

Parameters	Result	Units	Reporting Limit
% Solids	81.6	%	0.10
Silver, Total	0.50	u mg/kg	0.50
Aluminum, Total	8930	mg/kg	20.1
Arsenic, Total	4.5	mg/kg	1.0
Barium, Total	48.3	mg/kg	1.0
Beryllium, Total	0.55	mg/kg	0.40
Calcium, Total	17800	mg/kg	10.0
Cadmium, Total	0.54	mg/kg	0.20
Cobalt, Total	6.6	mg/kg	0.50
Chromium, Total	16.1	mg/kg	1.0
Copper, Total	21.4	mg/kg	1.0
Iron, Total	11600	mg/kg	5.0
Mercury, Total	0.17	mg/kg	0.04
Potassium, Total	1830	mg/kg	50.2
Magnesium, Total	10800	mg/kg	10.0
Manganese, Total	189	mg/kg	0.50
Sodium, Total	168	mg/kg	100

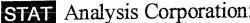
Attn: Mr. Kevin Axe

Date: Friday July 28th, 2000

RE: SS07 0-2 Project # 10512-004-004-9999 Lab ID: 9A07G130-025 Sample Date: 07/13/00 Date Received: 07/14/00

Metals Data Report

Parameters	Result		Units	Reporting Limit
Nickel, Total	18.4		mg/kg	1.0
Lead, Total	70.8		mg/kg	0.50
Antimony, Total	2.0	u	mg/kg	2.0
Selenium, Total	0.72		mg/kg	0.50
Thallium, Total	1.0	u	mg/kg	1.0
Vanadium, Total	20.9		mg/kg	0.50
Zinc, Total	100		mg/kg	1.0


Attn: Mr. Kevin Axe

Date: Friday July 28th, 2000

RE: SS07 0-2 Project # 10512-004-004-9999 Lab ID: 9A07G130-026 Sample Date: 07/13/00 Date Received: 07/14/00

SPLP Leachate Analysis Report

Parameters	Result	Units	Reporting Limit
Chromium, SPLP	0.050 u	mg/L	0.050
Lead, SPLP	0.023	mg/L	0.0075

STAT Analysis Corporation:
2201 West Campbell Park Drive, Chicago, Illinois 60612-3547 Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

Analytical Report

Client

Roy F. Weston

Project ID:

10512 004 004, Peoples Gas

Sample Number:

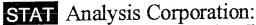
B7 10-12

STAT Project No.: 700728

STAT Sample No.: 908266

Time Taken:

7/13/00 7/13/00


Date Taken:

Date Received:

11:50

Date Reported:

Analyte	Detection Limit	Result	Units
Solids, Total		80.81	%
Volatile Organic Compounds Metho	d 5035/8260B		
Analysis Date: 7/18/00, 7/19/00		1 -	
Acetone	0.025	< 0.025	mg/Kg
Benzene	0.005	< 0.005	mg/Kg
Bromodichloromethane	0.005	< 0.005	mg/Kg
Bromoform	0.005	< 0.005	mg/Kg
Bromomethane	0.010	< 0.010	mg/Kg
2-Butanone	0.010	< 0.010	mg/Kg
Carbon Disulfide	0.005	0.010 J	mg/Kg
Carbon Tetrachloride	0.005	< 0.005 ^Ú J	mg/Kg
Chlorobenzene	0.005	< 0.005	mg/Kg
Chlorodibromomethane	0.005	< 0.005	mg/Kg
Chloroethane	0.010	< 0.010	mg/Kg
Chloroform	0.005	< 0.005	mg/Kg
Chloromethane	0.010	< 0.010	mg/Kg
1,1-Dichloroethane	0.005	< 0.005	mg/Kg
1,2-Dichloroethane	0.005	< 0.005	mg/Kg
1,1-Dichloroethene	0.005	0.007 ゴ	mg/Kg
cis-1,2-Dichloroethene	0.005	0.066 ^S	mg/Kg
trans-1,2-Dichloroethene	0.005	رّ. 800.0	mg/Kg
1,2-Dichloropropane	0.005	< 0.005 $\sqrt{5}$	mg/Kg
cis-1,3-Dichloropropene	0.005	< 0.005	mg/Kg
trans-1,3-Dichloropropene	0.005	< 0.005	mg/Kg
Ethyl Benzene	0.005	< 0.005	mg/Kg
2-Hexanone	0.010	< 0.010	mg/Kg
4-Methyl-2-pentanone	0.010	< 0.010	mg/Kg
Methylene Chloride	0.010	< 0.010	mg/Kg
Styrene	0005	< 0.005	mg/Kg
1,1,2,2-Tetrachloroethane	0.005	< 0.005	mg/Kg
Tetrachloroethene	0.005	0.064 5	mg/Kg
Toluene	0.005	< 0.005 VS	mg/Kg

2201 West Campbell Park Drive, Chicago, Illinois 60612-3547 Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

Analytical Report

Client:

Roy F. Weston

Project ID:

10512 004 004, Peoples Gas

B7 10-12

STAT Project No.: 700728

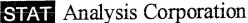
Sample Number:

STAT Sample No.: 908266

Date Received:

7/13/00

Date Taken:


7/13/00

Time Taken:

11:50

Date Reported:

Analyte	Detection Limit	Result	Units
1,1,1-Trichloroethane	0.005	< 0.005	mg/Kg
1,1,2-Trichloroethane	0.005	< 0.005	mg/Kg
Trichloroethene	0005	77.5 J	
Vinyl Acetate	0.010	< 0.010 🗸	mg/Kg
Vinyl Chloride	0.010	< 0.010	mg/Kg
Xylenes (total)	0.005	< 0.005	mg/Kg
Base-Neutral/Acid Compounds Met	thod 8270C		
Preparation Date: 7/18/00			
Analysis Date: 7/19/00			
Acenaphthene	0.330	< 0.330 VJ	mg/Kg
Acenaphthylene	0.330	< 0.330	mg/Kg
Anthracene	0.330	< 0.330	mg/Kg
Benzidine	0.330	< 0.330	mg/Kg
Benzo[a]anthracene	0.330	< 0.330	mg/Kg
Benzo[b]fluoranthene	0.330	< 0.330	mg/Kg
Benzo[k]fluoranthene	0.330	< 0.330	mg/Kg
Benzo[g,h,i]perylene	0.330	< 0.330	mg/Kg
Benzo[a]pyrene	0.330	< 0.330	mg/Kg
Benzoic Acid	0.330	< 0.330	mg/Kg
Benzyl alcohol	0.330	< 0.330	mg/Kg
bis(2-Chloroethoxy)methane	0.330	< 0.330	mg/Kg
bis(2-Chloroethyl)ether	0.330	< 0.330	mg/Kg
bis(2-Chloroisopropyl)ether	0.330	< 0.330	mg/Kg
bis(2-Ethylhexyl)phthalate	0.330	< 0.330	mg/Kg
4-Bromophenyl-phenylether	0.330	< 0.330	mg/Kg
Butylbenzylphthalate	0.330	< 0.330	mg/Kg
4-Chloroaniline	0.330	< 0.330	mg/Kg
4-Chloro-3-methylphenol	0.330	< 0.330	mg/Kg
2-Chloronaphthalene	0.330	< 0.330	mg/Kg
2-Chlorophenol	0.330	< 0.330	mg/Kg
4-Chlorophenyl-phenylether	0.330	< 0.330	mg/Kg
Chrysene	0.330	< 0.330	mg/Kg

STAT Analysis Corporation:
2201 West Campbell Park Drive, Chicago, Illinois 60612-3547 Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

Date Received:

Date Taken:

Analytical Report

Client:

Roy F. Weston

Project ID:

10512 004 004, Peoples Gas

Sample Number:

B7 10-12

STAT Project No.: 700728

STAT Sample No.: 908266

Time Taken: Date Reported: 7/13/00

7/13/00 11:50

Analyte	Detection Limit	Result	Units
Dibenz[a,h]anthracene	0.330	< 0.330	mg/Kg
Dibenzofuran	0.330	< 0.330	mg/Kg
1,2-Dichlorobenzene	0.330	< 0.330	mg/Kg
1,3-Dichlorobenzene	0.330	< 0.330	mg/Kg
1,4-Dichlorobenzene	0.330	< 0.330 VJ	mg/Kg
3,3'-Dichlorobenzidine	0.660	< 0.660	mg/Kg
2,4-Dichlorophenol	0.330	< 0.330	mg/Kg
Diethylphthalate	0.330	< 0.330	mg/Kg
2,4-Dimethylphenol	0.330	< 0.330	mg/Kg
Dimethylphthalate	0.330	< 0.330	mg/Kg
Di-n-butylphthalate	0.330	< 0.330	mg/Kg
4,6-Dinitro-2-methylphenol	1,60	< 1.60	mg/Kg
2,4-Dinitrophenol	1.60	< 1.60	mg/Kg
2,4-Dinitrotoluene	0.330	< 0.330	mg/Kg
2,6-Dinitrotoluene	0.330	< 0.330	mg/Kg
Di-n-octylphthalate	0.330	< 0.330	mg/Kg
Fluoranthene	0.330	< 0.330	mg/Kg
Fluorene	0.330	< 0.330	mg/Kg
Hexachlorobenzene	0,330	< 0.330	mg/Kg
Hexachlorobutadiene	0.330	< 0.330	mg/Kg
Hexachlorocyclopentadiene	0.330	< 0.330	mg/Kg
Hexachloroethane	0.330	< 0.330	mg/Kg
Indeno[1,2,3-cd]pyrene	0.330	< 0.330	mg/Kg
Isophorone	0.330	< 0.330	mg/Kg
2-Methylnaphthalene	0.330	< 0.330	mg/Kg
2-Methylphenol	0.330	< 0.330	mg/Kg
3&4-Methylphenol	0.330	< 0.330	mg/Kg
Naphthalene	0.330	< 0.330	mg/Kg
2-Nitroaniline	1,60	< 1.60	mg/Kg
3-Nitroaniline	1.60	< 1.60	mg/Kg
4-Nitroaniline	1.60	< 1.60	mg/Kg
Nitrobenzene	0.330	< 0.330	mg/Kg
2-Nitrophenol	1.60	< 1.60	mg/Kg

STAT Analysis Corporation:
2201 West Campbell Park Drive, Chicago, Illinois 60612-3547 Tel: 312.733.0551; Fax: 312.733.2386; e-mail address: STATinfo@STATAnalysis.com

Analytical Report

Client:

Roy F. Weston

Project ID:

10512 004 004, Peoples Gas

Sample Number:

B7 10-12

STAT Project No.: 700728

STAT Sample No.: 908266

Date Received.

7/13/00

Date Taken:

7/13/00

Time Taken:

11:50

Date Reported:

Analyte	Detection Limit	Result	Units
4-Nitrophenol	1.60	< 1.60	mg/Kg
N-Nitrosodimethylamine	0.330	< 0.330	mg/Kg
N-Nitroso-di-n-propylamine	0.330	< 0.330 V)	mg/Kg
n-Nitrosodiphenylamine	0.330	< 0.330	mg/Kg
Pentachlorophenol	1,60	< 1.60	mg/Kg
Phenanthrene	0.330	< 0.330	mg/Kg
Phenol	0.330	< 0.330	mg/Kg
Pyrene	0.330	< 0.330	mg/Kg
1,2,4-Trichlorobenzene	0.330	< 0.330 VJ	mg/Kg
2,4,5-Trichlorophenol	0,660	< 0.660	mg/Kg
2 4.6-Trichlorophenol	0.330	< 0.330	mg/Kg

Attn: Mr. Kevin Axe

Date: Friday July 21st, 2000

RE: B7 10-12 Project # 10512-004-004-9999 Lab ID: 9A07G130-015 Sample Date: 07/13/00 Sample Date: 07/13/00 Date Received: 07/14/00

Inorganic Data Report

Parameters	Result	Units	Reporting Limit
рН	7.7	рН@20.6	+-0.20

Attn: Mr. Kevin Axe

Date: Friday July 28th, 2000

RE: B7 10-12 Project # 10512-004-004-9999 Lab ID: 9A07G130-015 Sample Date: 07/13/00 Date Received: 07/14/00

Metals Data Report

Parameters	Result		Units	Reporting Limit
% Solids	80.8		%	0.10
Silver, Total	0.52	u	mg/kg	0.52
Aluminum, Total	12600		mg/kg	21.0
Arsenic, Total	6.4		mg/kg	1.0
Barium, Total	44.9		mg/kg	1.0
Beryllium, Total	0.72		mg/kg	0.42
Calcium, Total	51500		mg/kg	10.5
Cadmium, Total	0.31		mg/kg	0.21
Cobalt, Total	10.6		mg/kg	0.52
Chromium, Total	21.1		mg/kg	1.0
Copper, Total	26.7		mg/kg	1.0
Iron, Total	19900		mg/kg	5.2
Mercury, Total	0.04		mg/kg	0.04
Potassium, Total	4730		mg/kg	52.4
Magnesium, Total	26500		mg/kg	10.5
Manganese, Total	369		mg/kg	0.52
Sodium, Total	252		mg/kg	105

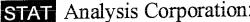
Attn: Mr. Kevin Axe

Date: Friday July 28th, 2000

RE: B7 10-12 Project # 10512-004-004-9999 Lab ID: 9A07G130-015 Sample Date: 07/13/00 Date Received: 07/14/00

Metals Data Report

Parameters	Result		Units	Reporting Limit
Nickel, Total	30.3		mg/kg	1.0
Lead, Total	12.0		mg/kg	0.52
Antimony, Total	2.1	u	mg/kg	2.1
Selenium, Total	0.52	u	mg/kg	0.52
Thallium, Total	1.0	u	mg/kg	1.0
Vanadium, Total	23.3		mg/kg	0.52
Zinc, Total	42.2		mg/kg	1.0


Attn: Mr. Kevin Axe

Date: Friday July 28th, 2000

RE: **B7 10-12**Project # 10512-004-004-9999
Lab ID: **9A07G130-016**Sample Date: 07/13/00
Date Received: 07/14/00

SPLP Leachate Analysis Report

Parameters	Result	Units	Reporting Limit
Chromium, SPLP	0.050 u	mg/L	0.050
Lead, SPLP	0.0075 u	mg/L	0.0075

Analytical Report

Client:

Roy F. Weston

Project ID:

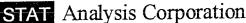
10512 004 004, Peoples Gas

Sample Number:

B7 14-15

STAT Project No.: 700728

STAT Sample No.: 908267


Date Received: Date Taken: Time Taken:

7/13/00 12:00

7/13/00

Date Reported: 7/28/00

Analyte	Detection Limit	Result	Units
Solids, Total		78.41	%
Volatile Organic Compounds Metho Analysis Date: 7/18/00, 7/19/00	od 5035/8260B		
Acetone	0.025	< 0.025	mg/Kg
Benzene	0.005	< 0.005	mg/Kg
Bromodichloromethane	0005	< 0.005	mg/Kg
Bromoform	0.005	< 0.005	mg/Kg
Bromomethane	0.010	< 0.010	mg/Kg
2-Butanone	0.010	< 0.010	mg/Kg
Carbon Disulfide	0.005	< 0.005	mg/Kg
Carbon Tetrachloride	0.005	< 0.005	mg/Kg
Chlorobenzene	0.005	< 0005	mg/Kg
Chlorodibromomethane	0.005	< 0.005	mg/Kg
Chloroethane	0.010	< 0.010	mg/Kg
Chloroform	0.005	< 0005	mg/Kg
Chloromethane	0.010	< 0.010	mg/Kg
1,1-Dichloroethane	0.005	< 0.005	mg/Kg
1,2-Dichloroethane	0.005	< 0.005	mg/Kg
1,1-Dichloroethene	0.005	< 0.005	mg/Kg
cis-1,2-Dichloroethene	0.005	0.063	mg/Kg
trans-1,2-Dichloroethene	0.005	< 0.005	mg/Kg
1,2-Dichloropropane	0.005	< 0.005	mg/Kg
cis-1,3-Dichloropropene	0.005	< 0.005	mg/Kg
trans-1,3-Dichloropropene	0.005	< 0.005	mg/Kg
Ethyl Benzene	0005	< 0.005	mg/Kg
2-Hexanone	0.010	< 0.010	mg/Kg
4-Methyl-2-pentanone	0.010	< 0.010	mg/Kg
Methylene Chloride	0.010	< 0.010	mg/Kg
Styrene	0.005	< 0.005	mg/Kg
1,1,2,2-Tetrachloroethane	0.005	< 0.005	mg/Kg
Tetrachloroethene	0.005	< 0.005	mg/Kg
Toluene	0.005	< 0.005	mg/Kg

Analytical Report

Client:

Roy F. Weston

Project ID:

10512 004 004, Peoples Gas

Date Received:

7/13/00

Sample Number:

B7 14-15

Date Taken:

7/13/00

STAT Project No.: 700728

Time Taken:

12:00

STAT Sample No. 908267

Date Reported:

7/28/00

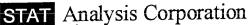
Analyte	Detection Limit		Units	
1,1,1-Trichloroethane	0.005	< 0.005	mg/Kg	
1,1,2-Trichloroethane	0.005	< 0.005	mg/Kg	
Trichloroethene	0.005	15.8	mg/Kg	
Vinyl Acetate	0.010	< 0.010	mg/Kg	
Vinyl Chloride	0.010	< 0.010	mg/Kg	
Xylenes (total)	0.005	< 0.005	mg/Kg	

Attn: Mr. Kevin Axe

Date: Friday July 21st, 2000

RE: **B7 14-15**Project # 10512-004-004-9999
Lab ID: **9A07G130-017**Sample Date: 07/13/00
Date Received: 07/14/00

Inorganic Data Report


Parameters	Result	Units	Reporting Limit
рН	7.8	pH@21.2	+-0.20

Attn: Mr. Kevin Axe

Date: Friday July 28th, 2000

RE: **B7 14-15**Project # 10512-004-004-9999
Lab ID: **9A07G130-017**Sample Date: 07/13/00
Date Received: 07/14/00

Parameters	Result	Units	Reporting Limit
% Solids	79.6	%	0.10

Analytical Report

Client:

Roy F. Weston

Project ID:

10512 004 004, Peoples Gas

Sample Number:

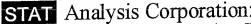
SS08, 0-2

STAT Project No.: 700735

STAT Sample No.: 908328

Date Received: Date Taken:

7/14/00 7/14/00


Time Taken:

15:40

Date Reported:

7/25/00

Analyte	Detection Limit	Result	Units
Solids, Total		78 16	%
Volatile Organic Compounds Metho	od 5035/8260B		
Analysis Date: 7/19/00		_	
Acetone	0.025	0.137 🔰 J	mg/Kg
Benzene	0.005	< 0.005	mg/Kg
Bromodichloromethane	0.005	< 0.005	mg/Kg
Bromoform	0.005	< 0.005	mg/Kg
Bromomethane	0.010	< 0.010	mg/Kg
2-Butanone	0.010	0.051	mg/Kg
Carbon Disulfide	0.005	< 0.005	mg/Kg
Carbon Tetrachloride	0.005	< 0.005	mg/Kg
Chlorobenzene	0.005	< 0.005	mg/Kg
Chlorodibromomethane	0.005	< 0.005	mg/Kg
Chloroethane	0.010	< 0.010	mg/Kg
Chloroform	0.005	< 0.005	mg/Kg
Chloromethane	0.010	< 0.010	mg/Kg
1,1-Dichloroethane	0.005	< 0.005	mg/Kg
1,2-Dichloroethane	0.005	< 0.005	mg/Kg
1,1-Dichloroethene	0.005	< 0.005	mg/Kg
cis-1,2-Dichloroethene	0.005	< 0.005	mg/Kg
trans-1,2-Dichloroethene	0.005	< 0.005	mg/Kg
1,2-Dichloropropane	0.005	< 0.005	mg/Kg
cis-1,3-Dichloropropene	0.005	< 0.005	mg/Kg
trans-1,3-Dichloropropene	0.005	< 0.005	mg/Kg
Ethyl Benzene	0.005	< 0.005	mg/Kg
2-Hexanone	0.010	< 0.010	mg/Kg
4-Methyl-2-pentanone	0.010	< 0.010	mg/Kg
Methylene Chloride	0.010	< 0.010	mg/Kg
Styrene	0.005	< 0.005	mg/Kg
1,1,2,2-Tetrachloroethane	0.005	< 0.005	mg/Kg
Tetrachloroethene	0.005	< 0.005	mg/Kg
Toluene	0.005	< 0.005	mg/Kg

Analytical Report

Client

Roy F. Weston

Project ID:

10512 004 004, Peoples Gas

SS08, 0-2

STAT Project No.: 700735

Sample Number:

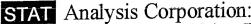
STAT Sample No.: 908328

Date Received

7/14/00

Date Taken:

7/14/00 15:40


Time Taken: Date Reported:

7/25/00

Analyte	Detection Limit	Result	Units	
1,1,1-Trichloroethane	0.005	< 0.005	mg/Kg	
1,1,2-Trichloroethane	0.005	< 0.005	mg/Kg	
Trichloroethene	0.005	< 0.005	mg/Kg	
Vinyl Acetate	0.010	< 0.010	mg/Kg	
Vinyl Chloride	0.010	< 0.010	mg/Kg	
Xylenes (total)	0.005	< 0.005	mg/Kg	

Neutral/Acid Compounds Method 8270C

Base-Neutral/Acid Compounds Meth	od 8270C		
Preparation Date: 7/19/00			
Analysis Date: 7/20/00		<i>ب</i> .	-
Acenaphthene	0.330	< 0.330	mg/Kg
Acenaphthylene	0.330	< 0.330	mg/Kg
Anthracene	0.330	< 0.330	mg/Kg
Benzidine	0.330	< 0.330	mg/Kg
Benzo[a]anthracene	0.330	< 0.330	mg/Kg
Benzo[b]fluoranthene	0.330	< 0.330	mg/Kg
Benzo[k]fluoranthene	0.330	< 0.330	mg/Kg
Benzo[g,h,i]perylene	0.330	< 0.330	mg/Kg
Benzo[a]pyrene	0.330	< 0.330	mg/Kg
Benzoic Acid	0.330	< 0.330	mg/Kg
Benzyl alcohol	0.330	< 0.330	mg/Kg
bis(2-Chloroethoxy)methane	0.330	< 0.330	mg/Kg
bis(2-Chloroethyl)ether	0.330	< 0.330	mg/Kg
bis(2-Chloroisopropyl)ether	0.330	< 0.330	mg/Kg
bis(2-Ethylhexyl)phthalate	0.330	< 0.330	mg/Kg
4-Bromophenyl-phenylether	0.330	< 0.330	mg/Kg
Butylbenzylphthalate	0.330	< 0.330	mg/Kg
4-Chloroaniline	0.330	< 0.330	mg/Kg
4-Chloro-3-methylphenol	0.330	< 0.330	mg/Kg
2-Chloronaphthalene	0.330	< 0.330	mg/Kg
2-Chlorophenol	0.330	< 0.330 ^U S	mg/Kg
4-Chlorophenyl-phenylether	0.330	< 0.330	mg/Kg
Chrysene	0.330	< 0.330	mg/Kg
•			

Analytical Report

Client:

Roy F. Weston

Project ID:

10512 004 004, Peoples Gas

Sample Number:

SS08, 0-2

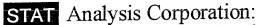
STAT Project No.: 700735

STAT Sample No. 908328

Date Received:

7/14/00

Date Taken:


7/14/00

Time Taken:

15:40

Date Reported: 7/25/00

Analyte	Detection Limit	Result	Units
Dibenz[a,h]anthracene	0.330	< 0.330	mg/Kg
Dibenzofuran	0.330	< 0.330	mg/Kg
1,2-Dichlorobenzene	0.330	< 0.330	mg/Kg
1,3-Dichlorobenzene	0.330	< 0.330	mg/Kg
1,4-Dichlorobenzene	0.330	< 0.330 pt	mg/Kg
3,3'-Dichlorobenzidine	0.660	< 0,660	mg/Kg
2,4-Dichlorophenol	0.330	< 0.330	mg/Kg
Diethylphthalate	0.330	< 0.330	mg/Kg
2,4-Dimethylphenol	0.330	< 0.330	mg/Kg
Dimethylphthalate	0.330	< 0.330	mg/Kg
Di-n-butylphthalate	0.330	< 0.330	mg/Kg
4,6-Dinitro-2-methylphenol	1.60	< 1.60	mg/Kg
2,4-Dinitrophenol	1.60	< 1.60	mg/Kg
2,4-Dinitrotoluene	0.330	< 0.330	mg/Kg
2,6-Dinitrotoluene	0.330	< 0.330	mg/Kg
Di-n-octylphthalate	0.330	< 0.330	mg/Kg
Fluoranthene	0.330	< 0.330	mg/Kg
Fluorene	0.330	< 0.330	mg/Kg
Hexachlorobenzene	0.330	< 0.330	mg/Kg
Hexachlorobutadiene	0.330	< 0.330	mg/Kg
Hexachlorocyclopentadiene	0.330	< 0.330 W	mg/Kg
Hexachloroethane	0.330	< 0.330	mg/Kg
Indeno[1,2,3-cd]pyrene	0.330	< 0.330	mg/Kg
Isophorone	0.330	< 0.330	mg/Kg
2-Methylnaphthalene	0.330	< 0.330	mg/Kg
2-Methylphenol	0.330	< 0.330 UT	mg/Kg
3&4-Methylphenol	0.330	< 0.330	mg/Kg
Naphthalene	0.330	< 0.330	mg/Kg
2-Nitroaniline	1 60	< 1.60	mg/Kg
3-Nitroaniline	1.60	< 1.60	mg/Kg
4-Nitroaniline	1.60	< 1.60	mg/Kg
Nitrobenzene	0.330	< 0.330	mg/Kg
2-Nitrophenol	1.60	< 1.60	mg/Kg

Analytical Report

Client:

Roy F. Weston

Project ID:

10512 004 004, Peoples Gas

Date Received

7/14/00

Sample Number:

SS08, 0-2

Date Taken:

7/14/00

STAT Project No.: 700735

Time Taken:

15:40

STAT Sample No.: 908328

Date Reported:

7/25/00

Analyte	Detection Limit	Result	Units
4-Nitrophenol	1.60	< 1.60	mg/Kg
N-Nitrosodimethylamine	0.330	< 0.330	mg/Kg
NEATH 1:	0.330	< 0.330 以	mg/Kg

14-1410 050 difficulty talliants			
N-Nitroso-di-n-propylamine	0.330	< 0.330	mg/Kg
n-Nitrosodiphenylamine	0.330	< 0.330	mg/Kg
Pentachlorophenol	1.60	< 1.60	mg/Kg
Phenanthrene	0.330	< 0.330	mg/Kg
Dhanal	0.330	< 0.330	mg/Kg

Phenol 0.330< 0.330 mg/Kg 0.330 Pyrene mg/Kg < 0.330 以 0.330 1,2,4-Trichlorobenzene

mg/Kg < 0.660 0.660 2,4,5-Trichlorophenol < 0.330 mg/Kg 2,4,6-Trichlorophenol 0.330

Attn: Mr. Kevin Axe

Date: Friday July 21st, 2000

RE: SS08 02 Project # 10512-004-004-9999 Lab ID: 9A07G130-023 Sample Date: 07/14/00 Date Received: 07/14/00

Inorganic Data Report

Parameters	Result	Units	Reporting Limit
рН	7.8	рН@20.6	+-0.20

Attn: Mr. Kevin Axe

Date: Friday July 28th, 2000

RE: SS08 02 Project # 10512-004-004-9999 Lab ID: 9A07G130-023 Sample Date: 07/14/00 Date Received: 07/14/00

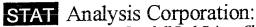
Result		Units	Reporting, Limit
76.3		%	0.10
0.51	u	mg/kg	0.51
15000		mg/kg	20.3
6.1		mg/kg	1.0
90.6		mg/kg	1.0
0.91		mg/kg	0.41
9580		mg/kg	10.2
0.57		mg/kg	0.20
7.7		mg/kg	0.51
22.4		mg/kg	1.0
31.6		mg/kg	1.0
19000		mg/kg	5.1
0.11		mg/kg	0.04
2620		mg/kg	50.8
6390		mg/kg	10.2
168		mg/kg	0.51
1950		mg/kg	102
	76.3 0.51 15000 6.1 90.6 0.91 9580 0.57 7.7 22.4 31.6 19000 0.11 2620 6390 168	76.3 0.51 u 15000 6.1 90.6 0.91 9580 0.57 7.7 22.4 31.6 19000 0.11 2620 6390 168	76.3 % 0.51 u mg/kg 15000 mg/kg 6.1 mg/kg 90.6 mg/kg 0.91 mg/kg 9580 mg/kg 7.7 mg/kg 7.7 mg/kg 22.4 mg/kg 31.6 mg/kg 19000 mg/kg 0.11 mg/kg 2620 mg/kg 6390 mg/kg

Attn: Mr. Kevin Axe

Date: Friday July 28th, 2000

RE: SS08 02 Project # 10512-004-004-9999 Lab ID: 9A07G130-023 Sample Date: 07/14/00 Date Received: 07/14/00

Parameters	Result		Units	Reporting Limit
Nickel, Total	24.2		mg/kg	1.0
Lead, Total	63.5		mg/kg	0.51
Antimony, Total	2.0	u	mg/kg	2.0
Selenium, Total	0.66		mg/kg	0.51
Thallium, Total	1.0	u	mg/kg	1.0
Vanadium, Total	28.2		mg/kg	0.51
Zinc, Total	77.3		mg/kg	1.0


Attn: Mr. Kevin Axe

Date: Friday July 28th, 2000

RE: SS08 0-2 Project # 10512-004-004-9999 Lab ID: 9A07G130-024 Sample Date: 07/14/00 Date Received: 07/14/00

SPLP Leachate Analysis Report

Parameters	Result	Units	Reporting Limit
Chromium, SPLP	0.050 u	mg/L	0.050
Lead, SPLP	0.025	mg/L	0.0075

Analytical Report

Client:

Roy F. Weston

Project ID

10512 004 004, Peoples Gas

Sample Number:

B8, 2-4

STAT Project No.: 700735 STAT Sample No.: 908325

1,1,2,2-Tetrachloroethane

Tetrachloroethene

Toluene

Date Received:

7/14/00

Date Taken: Time Taken 7/14/00 13:00

Date Reported:

%

7/25/00

	2000 1107	
Detection Limit	Result	Units

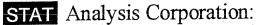
78.80

Analyte	Detection Limit
Solids, Total	
Volatile Organic	Compounds Method 5035/8260B
Analysis Data	7/10/00

Volatile Organic Compounds Method 5	035/8260B		
Analysis Date: 7/19/00			
Acetone	0.025	< 0.025 VS	mg/Kg
Benzene	0.005	< 0.005	mg/Kg
Bromodichloromethane	0.005	< 0.005	mg/Kg
Bromoform	0.005	< 0.005	mg/Kg
Bromomethane	0.010	< 0.010	mg/Kg
2-Butanone	0.010	< 0.010	mg/Kg
Carbon Disulfide	0005	< 0.005	mg/Kg
Carbon Tetrachloride	0.005	< 0.005	mg/Kg
Chlorobenzene	0.005	< 0.005	mg/Kg
Chlorodibromomethane	0005	< 0.005	mg/Kg
Chloroethane	0.010	< 0.010	mg/Kg
Chloroform	0.005	< 0.005	mg/Kg
Chloromethane	0.010	< 0.010	mg/Kg
1,1-Dichloroethane	0.005	< 0.005	mg/Kg
1,2-Dichloroethane	0.005	< 0.005	mg/Kg
1,1-Dichloroethene	0.005	< 0.005	mg/Kg
cis-1,2-Dichloroethene	0.005	< 0.005	mg/Kg
trans-1,2-Dichloroethene	0.005	< 0.005	mg/Kg
1,2-Dichloropropane	0.005	< 0.005	mg/Kg
cis-1,3-Dichloropropene	0.005	< 0.005	mg/Kg
trans-1,3-Dichloropropene	0.005	< 0.005	mg/Kg
Ethyl Benzene	0.005	< 0.005	mg/Kg
2-Hexanone	0.010	< 0.010	mg/Kg
4-Methyl-2-pentanone	0.010	< 0.010	mg/Kg
Methylene Chloride	0.010	< 0.010	mg/Kg
Styrene	0.005	< 0.005	mg/Kg
			/ 17

0.005

0.005


0.005

< 0.005

< 0.005

< 0.005 V) mg/Kg

mg/Kg mg/Kg

Analytical Report

Client:

Roy F. Weston

Project ID:

10512 004 004, Peoples Gas

Date Received: Date Taken:

7/14/00

Sample Number:

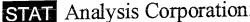
B8, 2-4

Time Taken:

7/14/00 13:00

STAT Project No.: 700735

Date Reported:


7/25/00

STAT Sample No.: 908325

Analyte	Detection Limit	Result	Units
1,1,1-Trichloroethane	0.005	< 0.005	mg/Kg
1,1,2-Trichloroethane	0.005	< 0.005 < 0.005	mg/Kg
Trichloroethene	0,005	< 0.005	U) mg/Kg
Vinyl Acetate	0.010	< 0.010	mg/Kg
Vinyl Chloride	0.010	< 0.010	mg/Kg
Xylenes (total)	0.005	< 0.005	mg/Kg

Base-Neutral/Acid Compounds Method 8270C

Base-Neutral/Acid Compo			
Preparation Date: 7/19/00			
Analysis Date: 7/20/00)		
Acenaphthene	0.330	< 0.330 (mg/Kg
Acenaphthylene	0.330	< 0.330	mg/Kg
Anthracene	0.330	< 0.330	mg/Kg
Benzidine	0.330	< 0.330	mg/Kg
Benzo[a]anthracene	0.330	< 0.330	mg/Kg
Benzo[b]fluoranthene	0.330	< 0.330	mg/Kg
Benzo[k]fluoranthene	0.330	< 0.330	mg/Kg
Benzo[g,h,i]perylene	0.330	< 0.330	mg/Kg
Benzo[a]pyrene	0.330	< 0.330	mg/Kg
Benzoic Acid	0.330	< 0.330	mg/Kg
Benzyl alcohol	0.330	< 0.330	mg/Kg
bis(2-Chloroethoxy)methan	e 0.330	< 0.330	mg/Kg
bis(2-Chloroethyl)ether	0.330	< 0.330	mg/Kg
bis(2-Chloroisopropyl)ether	0.330	< 0.330	mg/Kg
bis(2-Ethylhexyl)phthalate	0.330	< 0.330	mg/Kg
4-Bromophenyl-phenylether	0.330	< 0.330	mg/Kg
Butylbenzylphthalate	0.330	< 0.330	mg/Kg
4-Chloroaniline	0.330	< 0.330	mg/Kg
4-Chloro-3-methylphenol	0.330	< 0.330	mg/Kg
2-Chloronaphthalene	0.330	< 0.330	mg/Kg
2-Chlorophenol	0.330	< 0.330 V	\ mg/Kg
4-Chlorophenyl-phenylether	0.330	< 0.330	mg/Kg
Chrysene	0.330	< 0.330	mg/Kg

Analytical Report

Client:

Roy F. Weston

Project ID:

10512 004 004, Peoples Gas

Sample Number:

B8, 2-4

STAT Project No.: 700735

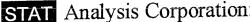
STAT Sample No.: 908325

Date Received:

7/14/00

Date Taken:

7/14/00


Time Taken:

13:00

Date Reported:

7/25/00

Analyte	Detection Limit	Result	Units
Dibenz[a,h]anthracene	0.330	< 0.330	mg/Kg
Dibenzofuran	0.330	< 0.330	mg/Kg
1,2-Dichlorobenzene	0.330	< 0.330	mg/Kg
1,3-Dichlorobenzene	0.330	< 0.330	mg/Kg
1,4-Dichlorobenzene	0.330	< 0.330 V	mg/Kg
3,3'-Dichlorobenzidine	0.660	< 0.660	mg/Kg
2,4-Dichlorophenol	0.330	< 0.330	mg/Kg
Diethylphthalate	0.330	< 0.330	mg/Kg
2,4-Dimethylphenol	0.330	< 0.330	mg/Kg
Dimethylphthalate	0.330	< 0.330	mg/Kg
Di-n-butylphthalate	0.330	< 0.330	mg/Kg
4,6-Dinitro-2-methylphenol	1.60	< 1.60	mg/Kg
2,4-Dinitrophenol	1.60	< 1.60	mg/Kg
2,4-Dinitrotoluene	0.330	< 0.330	mg/Kg
2,6-Dinitrotoluene	0.330	< 0.330	mg/Kg
Di-n-octylphthalate	0.330	< 0.330	mg/Kg
Fluoranthene	0.330	< 0.330	mg/Kg
Fluorene	0.330	< 0.330	mg/Kg
Hexachlorobenzene	0.330	< 0.330	mg/Kg
Hexachlorobutadiene	0.330	< 0.330	mg/Kg
Hexachlorocyclopentadiene	0.330	< 0.330 J	
Hexachloroethane	0.330	< 0.330	mg/Kg
Indeno[1,2,3-cd]pyrene	0.330	< 0.330	mg/Kg
Isophorone	0.330	< 0.330	mg/Kg
2-Methylnaphthalene	0.330	< 0.330	mg/Kg
2-Methylphenol	0.330	< 0.330 V	
3&4-Methylphenol	0.330	< 0.330	mg/Kg
Naphthalene	0.330	< 0.330	mg/Kg
2-Nitroaniline	1.60	< 1.60	mg/Kg
3-Nitroaniline	1.60	< 1.60	mg/Kg
4-Nitroaniline	1.60	< 1.60	mg/Kg
Nitrobenzene	0.330	< 0.330	mg/Kg
2-Nitrophenol	1.60	< 1.60	mg/Kg

Analytical Report

Client:

Roy F: Weston

Project ID:

10512 004 004, Peoples Gas

Date Received: Date Taken:

7/14/00

Sample Number:

B8, 2-4

Time Taken

7/14/00 13:00

STAT Project No.: 700735

Date Reported:

7/25/00

STAT Sample No.: 908325

Detection Limit	Result	Units
1.60	< 1.60	mg/Kg
0.330	< 0.330	mg/Kg
0.330	< 0.330 V)	mg/Kg
0.330	< 0.330	mg/Kg
1.60	< 1.60	mg/Kg
0.330	< 0.330	mg/Kg
0.330	< 0.330	mg/Kg
0.330	< 0.330	mg/Kg
0.330	< 0.330 VS	mg/Kg
0.660	< 0.660	mg/Kg
0.330	< 0.330	mg/Kg
	1.60 0.330 0.330 0.330 1.60 0.330 0.330 0.330 0.330 0.330	1.60

Attn: Mr. Kevin Axe

Date: Friday July 28th, 2000

RE: **B8 2-4**

Project # 10512-004-004-9999 Lab ID: **9A07G129-021** Sample Date: 07/14/00 Date Received: 07/14/00

Parameters	Result		Units	Reporting Limit
% Solids	82.0		%	0.10
Silver, Total	0.51	u	mg/kg	0.51
Aluminum, Total	11900		mg/kg	20.3
Arsenic, Total	8.3		mg/kg	1.0
Barium, Total	49.6		mg/kg	1.0
Beryllium, Total	0.66		mg/kg	0.41
Calcium, Total	19000		mg/kg	10.2
Cadmium, Total	0.20	u	mg/kg	0.20
Cobalt, Total	11.0		mg/kg	0.51
Chromium, Total	22.0		mg/kg	1.0
Copper, Total	22.0		mg/kg	1.0
Iron, Total	23200		mg/kg	5.1
Mercury, Total	0.04	u	mg/kg	0.04
Potassium, Total	2950		mg/kg	50.8
Magnesium, Total	16200		mg/kg	10.2
Manganese, Total	592		mg/kg	0.51
Sodium, Total	184		mg/kg	102

Attn: Mr. Kevin Axe

Date: Friday July 28th, 2000

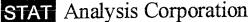
RE: **B8 2-4**

Project # 10512-004-004-9999 Lab ID: **9A07G129-021** Sample Date: 07/14/00 Date Received: 07/14/00

Parameters	Result		Units	Reporting Limit
Nickel, Total	26.7		mg/kg	1.0
Lead, Total	12.3		mg/kg	0.51
Antimony, Total	2.0	u	mg/kg	2.0
Selenium, Total	0.51		mg/kg	0.51
Thallium, Total	1.0	u	mg/kg	1.0
Vanadium, Total	26.0		mg/kg	0.51
Zinc, Total	41.7		mg/kg	1.0

Attn: Mr. Kevin Axe

Date: Friday July 28th, 2000


RE: **B8 2-4**

Project # 10512-004-004-9999 Lab ID: **9A07G129-022**

Sample Date: 07/14/00 Date Received: 07/14/00

SPLP Leachate Analysis Report

Parameters	Result	Units	Reporting Limit
Chromium, SPLP	0.050 u	mg/L	0.050
Lead, SPLP	0.0075 u	mġ/L	0.0075

Analytical Report

Client:

Roy F. Weston

Project ID:

10512 004 004, Peoples Gas

Sample Number:

SS09, 0-2

STAT Project No.: 700735

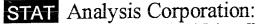
STAT Sample No.: 908327

Date Received:

7/14/00

Date Taken

7/14/00


Time Taken:

16:00

Date Reported:

7/25/00

Analyte	Detection Limit	Result	Units
Solids, Total		79.77	%
Volatile Organic Compounds Metho Analysis Date: 7/19/00	od 5035/8260B		
Acetone	0.025	0.106	mg/Kg
Benzene	0.005	< 0.005	mg/Kg
Bromodichloromethane	0.005	< 0.005	mg/Kg
Bromoform	0.005	< 0.005	mg/Kg
Bromomethane	0.010	< 0.010	mg/Kg
2-Butanone	0.010	0.032	mg/Kg
Carbon Disulfide	0.005	< 0.005	mg/Kg
Carbon Tetrachloride	0.005	< 0005	mg/Kg
Chlorobenzene	0.005	< 0.005	mg/Kg
Chlorodibromomethane	0.005	< 0.005	mg/Kg
Chloroethane	0.010	< 0.010	mg/Kg
Chloroform	0.005	< 0.005	mg/Kg
Chloromethane	0.010	< 0.010	mg/Kg
1,1-Dichloroethane	0.005	< 0.005	mg/Kg
1,2-Dichloroethane	0.005	< 0.005	mg/Kg
1,1-Dichloroethene	0.005	< 0.005	mg/Kg
cis-1,2-Dichloroethene	0.005	< 0.005	mg/Kg
trans-1,2-Dichloroethene	0.005	< 0.005	mg/Kg
1,2-Dichloropropane	0.005	< 0.005	mg/Kg
cis-1,3-Dichloropropene	0.005	< 0.005	mg/Kg
trans-1,3-Dichloropropene	0.005	< 0.005	mg/Kg
Ethyl Benzene	0.005	< 0.005	mg/Kg
2-Hexanone	0.010	< 0010	mg/Kg
4-Methyl-2-pentanone	0.010	< 0.010	mg/Kg
Methylene Chloride	0.010	< 0.010	mg/Kg
Styrene	0.005	< 0.005	mg/Kg
1,1,2,2-Tetrachloroethane	0.005	< 0.005	mg/Kg
Tetrachloroethene	0.005	< 0.005	mg/Kg
Toluene	0.005	< 0.005	mg/Kg

Analytical Report

Client

Roy F. Weston

Project ID:

10512 004 004, Peoples Gas

SS09, 0-2

STAT Project No.: 700735

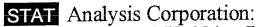
Sample Number:

STAT Sample No.: 908327

Date Received:

7/14/00

Date Taken Time Taken: 7/14/00 16:00


Date Reported:

7/25/00

Analyte	Detection Limit	Result	Units
1,1,1-Trichloroethane	0.005	< 0.005	mg/Kg
1,1,2-Trichloroethane	0005	< 0.005	mg/Kg
Trichloroethene	0.005	< 0.005	mg/Kg
Vinyl Acetate	0.010	< 0.010	mg/Kg
Vinyl Chloride	0,010	< 0.010	mg/Kg
Xylenes (total)	0.005	< 0.005	mg/Kg

Base-Neutral/Acid Compounds Method 8270C

Base-Neutral/Acid Compounds Med	10u 02/0C	
Preparation Date: 7/19/00		
Analysis Date: 7/20/00		
Acenaphthene	0.330	< 0.330 5 mg/Kg
Acenaphthylene	0.330	< 0.330 mg/Kg
Anthracene	0.330	< 0.330 mg/Kg
Benzidine	0.330	< 0.330 mg/Kg
Benzo[a]anthracene	0.330	< 0.330 mg/Kg
Benzo[b]fluoranthene	0.330	< 0.330 mg/Kg
Benzo[k]fluoranthene	0.330	< 0.330 mg/Kg
Benzo[g,h,i]perylene	0.330	< 0.330 mg/Kg
Benzo[a]pyrene	0.330	< 0.330 mg/Kg
Benzoic Acid	0.330	< 0.330 mg/Kg
Benzyl alcohol	0.330	< 0.330 mg/Kg
bis(2-Chloroethoxy)methane	0.330	< 0.330 mg/Kg
bis(2-Chloroethyl)ether	0.330	< 0.330 mg/Kg
bis(2-Chloroisopropyl)ether	0.330	< 0.330 mg/Kg
bis(2-Ethylhexyl)phthalate	0.330	< 0.330 mg/Kg
4-Bromophenyl-phenylether	0.330	< 0.330 mg/Kg
Butylbenzylphthalate	0.330	< 0.330 mg/Kg
4-Chloroaniline	0.330	< 0.330 mg/Kg
4-Chloro-3-methylphenol	0.330	< 0.330 mg/Kg
2-Chloronaphthalene	0.330	< 0.330 mg/Kg
2-Chlorophenol	0.330	< 0.330 \(\sigma\) mg/Kg
4-Chlorophenyl-phenylether	0.330	< 0.330 mg/Kg
Chrysene	0.330	< 0.330 mg/Kg

Analytical Report

Client:

Roy F. Weston

Project ID:

10512 004 004, Peoples Gas

Sample Number:

SS09, 0-2

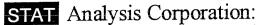
STAT Project No.: 700735 STAT Sample No.: 908327

Date Received:

7/14/00

Date Taken:

7/14/00


Time Taken:

16:00

Date Reported:

7/25/00

Analyte	Detection Limit	Result	Units
Dibenz[a,h]anthracene	0.330	< 0.330	mg/Kg
Dibenzofuran	0.330	< 0.330	mg/Kg
1,2-Dichlorobenzene	0.330	< 0.330	mg/Kg
1,3-Dichlorobenzene	0.330	< 0.330	mg/Kg
1,4-Dichlorobenzene	0.330	< 0.330 U	mg/Kg
3,3'-Dichlorobenzidine	0.660	< 0.660	mg/Kg
2,4-Dichlorophenol	0.330	< 0.330	mg/Kg
Diethylphthalate	0.330	< 0.330	mg/Kg
2,4-Dimethylphenol	0.330	< 0.330	mg/Kg
Dimethylphthalate	0.330	< 0.330	mg/Kg
Di-n-butylphthalate	0.330	< 0.330	mg/Kg
4,6-Dinitro-2-methylphenol	1.60	< 1.60	mg/Kg
2,4-Dinitrophenol	1.60	< 1.60	mg/Kg
2,4-Dinitrotoluene	0.330	< 0.330	mg/Kg
2,6-Dinitrotoluene	0.330	< 0.330	mg/Kg
Di-n-octylphthalate	0.330	< 0.330	mg/Kg
Fluoranthene	0.330	< 0.330	mg/Kg
Fluorene	0.330	< 0.330	mg/Kg
Hexachlorobenzene	0.330	< 0.330	mg/Kg
Hexachlorobutadiene	0.330	< 0.330	mg/Kg
Hexachlorocyclopentadiene	0.330	< 0.330 VS	mg/Kg
Hexachloroethane	0.330	< 0.330	mg/Kg
Indeno[1,2,3-cd]pyrene	0.330	< 0.330	mg/Kg
Isophorone	0.330	< 0.330	mg/Kg
2-Methylnaphthalene	0.330	< 0.330	mg/Kg
2-Methylphenol	0.330	< 0.330 V	mg/Kg
3&4-Methylphenol	0.330	< 0.330	mg/Kg
Naphthalene	0.330	< 0.330	mg/Kg
2-Nitroaniline	1 60	< 1,60	mg/Kg
3-Nitroaniline	1.60	< 1 60	mg/Kg
4-Nitroaniline	1.60	< 1.60	mg/Kg
Nitrobenzene	0.330 -	< 0.330	mg/Kg
2-Nitrophenol	1.60	< 1.60	mg/Kg

Analytical Report

Client:

Roy F. Weston

Project ID:

10512 004 004, Peoples Gas

SS09, 0-2

Sample Number: STAT Project No.: 700735

STAT Sample No.: 908327

Date Received:

7/14/00

Date Taken:

7/14/00

Time Taken

16:00

Date Reported:

7/25/00

Analyte	Detection Limit	Result	Units
4-Nitrophenol	160	< 1.60	mg/Kg
N-Nitrosodimethylamine	0.330	< 0.330	mg/Kg
N-Nitroso-di-n-propylamine	0.330	< 0.330 W	mg/Kg
n-Nitrosodiphenylamine	0.330	< 0.330	mg/Kg
Pentachlorophenol	1.60	< 1.60	mg/Kg
Phenanthrene	0.330	< 0.330	mg/Kg
Phenol	0.330	< 0.330	mg/Kg
Pyrene	0.330	< 0.330	mg/Kg
1,2,4-Trichlorobenzene	0.330	< 0.330 VT	
2,4,5-Trichlorophenol	0.660	< 0.660	mg/Kg
2.4.6-Trichlorophenol	0.330	< 0.330	mg/Kg

Attn: Mr. Kevin Axe

Date: Friday July 21st, 2000

RE: SS09 0-2 Project # 10512-004-004-9999 Lab ID: 9A07G130-021 Sample Date: 07/14/00 Date Received: 07/14/00

Inorganic Data Report

Parameters	Result	Units	Reporting Limit
рН	7.5	pH@23.0	+-0.20

Attn: Mr. Kevin Axe

Date: Friday July 28th, 2000

RE: SS09 0-2 Project # 10512-004-004-9999 Lab ID: 9A07G130-021 Sample Date: 07/14/00 Date Received: 07/14/00

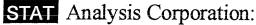
Parameters	Result	Units	Reporting Limit
% Solids	83.4	%	0.10
Silver, Total	0.50	u mg/kg	0.50
Aluminum, Total	16100	mg/kg	19.8
Arsenic, Total	5.9	mg/kg	0.99
Barium, Total	107	mg/kg	0.99
Beryllium, Total	1.0	mg/kg	0.40
Calcium, Total	5360	mg/kg	9.9
Cadmium, Total	0.26	mg/kg	0.20
Cobalt, Total	13.0	mg/kg	0.50
Chromium, Total	24.8	mg/kg	0.99
Copper, Total	21.5	mg/kg	0.99
Iron, Total	16200	mg/kg	5.0
Mercury, Total	0.12	mg/kg	0.04
Potassium, Total	3140	mg/kg	49.5
Magnesium, Total	5930	mg/kg	9.9
Manganese, Total	160	mg/kg	0.50
Sodium, Total	617	mg/kg	99.1

Attn: Mr. Kevin Axe

Date: Friday July 28th, 2000

RE: SS09 0-2 Project # 10512-004-004-9999 Lab ID: 9A07G130-021 Sample Date: 07/14/00 Date Received: 07/14/00

Parameters	Result		Units	Reporting Limit
Nickel, Total	36.8		mg/kg	0.99
Lead, Total	14.7		mg/kg	0.50
Antimony, Total	2.0	u	mg/kg	2.0
Selenium, Total	0.50	u	mg/kg	0.50
Thallium, Total	0.99	u	mg/kg	0.99
Vanadium, Total	32.8		mg/kg	0.50
Zinc, Total	44.4		mg/kg	0.99


Attn: Mr. Kevin Axe

Date: Friday July 28th, 2000

RE: SS09 0-2 Project # 10512-004-004-9999 Lab ID: 9A07G130-022 Sample Date: 07/14/00 Date Received: 07/14/00

SPLP Leachate Analysis Report

Parameters	Result	Units	Reporting Limit
Chromium, SPLP	0.050 u	mg/L	0.050
Lead, SPLP	0.011	mg/L	0.0075

Analytical Report

Client:

Roy F. Weston

Project ID:

10512 004 004, Peoples Gas

B09 4-5

Sample Number: STAT Project No.: 700728

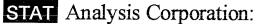
STAT Sample No.: 908258

Date Received:

7/13/00

Date Taken:

7/12/00


Time Taken:

Date Reported:

13:00

7/21/00

Analyte	Detection Limit	Result	Units
Solids, Total		81.44	%
Volatile Organic Compounds Metho	od 5035/8260B		
Analysis Date: 7/18/00			
Acetone	0.025	< 0.025	mg/Kg
Benzene	0.005	< 0.005	mg/Kg
Bromodichloromethane	0.005	< 0.005	mg/Kg
Bromoform	0.005	< 0.005	mg/Kg
Bromomethane	0.010	< 0.010	mg/Kg
2-Butanone	0.010	< 0.010	mg/Kg
Carbon Disulfide	0.005	< 0.005	mg/Kg
Carbon Tetrachloride	0.005	< 0.005	mg/Kg
Chlorobenzene	0.005	< 0.005	mg/Kg
Chlorodibromomethane	0.005	< 0.005	mg/Kg
Chloroethane	0.010	< 0.010	mg/Kg
Chloroform	0.005	< 0.005	mg/Kg
Chloromethane	0.010	< 0.010	mg/Kg
1,1-Dichloroethane	0.005	< 0.005	mg/Kg
1,2-Dichloroethane	0.005	< 0.005	mg/Kg
1,1-Dichloroethene	0.005	< 0.005	mg/Kg
cis-1,2-Dichloroethene	0.005	< 0.005	mg/Kg
trans-1,2-Dichloroethene	0.005	< 0.005	mg/Kg
1,2-Dichloropropane	0.005	< 0.005	mg/Kg
cis-1,3-Dichloropropene	0.005	< 0.005	mg/Kg
trans-1,3-Dichloropropene	0.005	< 0.005	mg/Kg
Ethyl Benzene	0.005	< 0.005	mg/Kg
2-Hexanone	0.010	< 0.010	mg/Kg
4-Methyl-2-pentanone	0.010	< 0.010	mg/Kg
Methylene Chloride	0.010	< 0.010	mg/Kg
Styrene	0.005	< 0.005	mg/Kg
1,1,2,2-Tetrachloroethane	0.005	< 0.005	mg/Kg
Tetrachloroethene	0.005	< 0.005	mg/Kg
Toluene	0.005	< 0.005	mg/Kg

Analytical Report

Client:

Roy F. Weston

Project ID:

10512 004 004, Peoples Gas

B09 4-5

Sample Number: STAT Project No.: 700728

STAT Sample No.: 908258

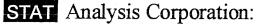
Date Received:

7/13/00

Date Taken:

7/12/00

Time Taken: Date Reported: 13:00 7/21/00


Analyte	Detection Limit	Result	Units
1,1,1-Trichloroethane	0.005	< 0.005	mg/Kg
1,1,2-Trichloroethane	0.005	< 0.005	mg/Kg
Trichloroethene	0.005	< 0.005	mg/Kg
Vinyl Acetate	0.010	< 0.010	mg/Kg
Vinyl Chloride	0.010	< 0.010	mg/Kg
Xylenes (total)	0.005	< 0.005	mo/Ko

Base-Neutral/Acid Compounds Method 8270C

Preparation Date:

7/18/00

Analysis Date: 7/18/00			
Acenaphthene	0.330	< 0.330 🗷	mg/Kg
Acenaphthylene	0.330	< 0.330	mg/Kg
Anthracene	0.330	< 0.330	mg/Kg
Benzidine	0.330	< 0.330	mg/Kg
Benzo[a]anthracene	0.330	< 0.330	mg/Kg
Benzo[b]fluoranthene	0.330	< 0.330	mg/Kg
Benzo[k]fluoranthene	0.330	< 0.330	mg/Kg
Benzo[g,h,i]perylene	0.330	< 0.330	mg/Kg
Benzo[a]pyrene	0.330	< 0.330	mg/Kg
Benzoic Acid	0.330	< 0.330	mg/Kg
Benzyl alcohol	0.330	< 0.330	mg/Kg
bis(2-Chloroethoxy)methane	0.330	< 0.330	mg/Kg
bis(2-Chloroethyl)ether	0.330	< 0.330	mg/Kg
bis(2-Chloroisopropyl)ether	0.330	< 0.330	mg/Kg
bis(2-Ethylhexyl)phthalate	0.330	< 0.330	mg/Kg
4-Bromophenyl-phenylether	0.330	< 0.330	mg/Kg
Butylbenzylphthalate	0.330	< 0.330	mg/Kg
4-Chloroaniline	0.330	< 0.330	mg/Kg
4-Chloro-3-methylphenol	0.330	< 0.330	mg/Kg
2-Chloronaphthalene	0.330	< 0.330	mg/Kg
2-Chlorophenol	0.330	< 0.330	mg/Kg
4-Chlorophenyl-phenylether	0.330	< 0.330	mg/Kg
Chrysene	0.330	< 0.330	mg/Kg

Analytical Report

Client:

Roy F. Weston

Project ID:

10512 004 004, Peoples Gas

B09 4-5

Sample Number: STAT Project No.: 700728

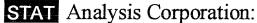
STAT Sample No.: 908258

Date Received:

7/13/00

Date Taken:

7/12/00


Time Taken:

13:00

Date Reported:

7/21/00

Analyte	Detection Limit	Result	Units
Dibenz[a,h]anthracene	0.330	< 0.330	mg/Kg
Dibenzofuran	0.330	< 0.330	mg/Kg
1,2-Dichlorobenzene	0.330	< 0.330	mg/Kg
1,3-Dichlorobenzene	0.330	< 0.330	mg/Kg
1,4-Dichlorobenzene	0.330	< 0.330 V	
3,3'-Dichlorobenzidine	0.660	< 0.660	mg/Kg
2,4-Dichlorophenol	0.330	< 0.330	mg/Kg
Diethylphthalate	0.330	< 0.330	mg/Kg
2,4-Dimethylphenol	0.330	< 0.330	mg/Kg
Dimethylphthalate	0.330	< 0.330	mg/Kg
Di-n-butylphthalate	0.330	< 0.330	mg/Kg
4,6-Dinitro-2-methylphenol	1.60	< 1.60	mg/Kg
2,4-Dinitrophenol	1.60	< 1.60	mg/Kg
2,4-Dinitrotoluene	0.330	< 0.330	mg/Kg
2,6-Dinitrotoluene	0.330	< 0.330	mg/Kg
Di-n-octylphthalate	0.330	< 0.330	mg/Kg
Fluoranthene	0.330	< 0.330	mg/Kg
Fluorene	0.330	< 0.330	mg/Kg
Hexachlorobenzene	0.330	< 0.330	mg/Kg
Hexachlorobutadiene	0.330	< 0.330	mg/Kg
Hexachlorocyclopentadiene	0.330	< 0.330	mg/Kg
Hexachloroethane	0.330	< 0.330	mg/Kg
Indeno[1,2,3-cd]pyrene	0.330	< 0.330	mg/Kg
Isophorone	0.330	< 0.330	mg/Kg
2-Methylnaphthalene	0.330	< 0.330	mg/Kg
2-Methylphenol	0.330	< 0.330	mg/Kg
3&4-Methylphenol	0.330	< 0.330	mg/Kg
Naphthalene	0.330	< 0.330	mg/Kg
2-Nitroaniline	1.60	< 1.60	mg/Kg
3-Nitroaniline	1.60	< 1.60	mg/Kg
4-Nitroaniline	160	< 1.60	mg/Kg
Nitrobenzene	0.330	< 0.330	mg/Kg
2-Nitrophenol	1.60	< 1.60	mg/Kg

Analytical Report

Client:

Roy F. Weston

Project ID:

10512 004 004, Peoples Gas

B09 4-5

Sample Number: STAT Project No.: 700728

STAT Sample No.: 908258

Date Received:

7/13/00

Date Taken:

7/12/00

Time Taken:

13:00

Date Reported:

7/21/00

Analyte	Detection Limit	Result	Units
4-Nitrophenol	1,60	< 1.60	mg/Kg
N-Nitrosodimethylamine	0.330	< 0.330	mg/Kg
N-Nitroso-di-n-propylamine	0.330	< 0.330 VJ	mg/Kg
n-Nitrosodiphenylamine	0.330	< 0.330	mg/Kg
Pentachlorophenol	1.60	< 1.60	mg/Kg
Phenanthrene	0.330	< 0.330	mg/Kg
Phenol	0.330	< 0.330	mg/Kg
Pyrene	0.330	< 0.330	mg/Kg
1,2,4-Trichlorobenzene	0.330	< 0.330 VJ	mg/Kg
2,4,5-Trichlorophenol	0.660	< 0.660	mg/Kg
2,4,6-Trichlorophenol	0.330	< 0.330	mg/Kg

Attn: Mr. Kevin Axe

Date: Tuesday July 25th, 2000

RE: **B9 4-5**

Project # 10512-004-004-9999 Lab ID: **9A07G129-001** Sample Date: 07/12/00 Date Received: 07/14/00

Inorganic Data Report

Parameters	Result	Units	Reporting Limit
рН	7.5	pH@21.9	+-0.20

Attn: Mr. Kevin Axe

Date: Friday July 28th, 2000

RE: **B9 4-5**

Project # 10512-004-004-9999 Lab ID: **9A07G129-001** Sample Date: 07/12/00 Date Received: 07/14/00

Parameters	Result		Units	Reporting Limit
% Solids	81.8		%	0.10
Silver, Total	0.54	u	mg/kg	0.54
Aluminum, Total	12000		mg/kg	21.6
Arsenic, Total	5.8		mg/kg	1.1
Barium, Total	34.4		mg/kg	1.1
Beryllium, Total	0.65		mg/kg	0.43
Calcium, Total	42600		mg/kg	10.8
Cadmium, Total	0.22	u	mg/kg	0.22
Cobalt, Total	9.6		mg/kg	0.54
Chromium, Total	19.1		mg/kg	1.1
Copper, Total	33.1		mg/kg	1.1
Iron, Total	21800		mg/kg	5.4
Mercury, Total	0.04	u	mg/kg	0.04
Potassium, Total	3880		mg/kg	54.1
Magnesium, Total	25400		mg/kg	10.8
Manganese, Total	466		mg/kg	0.54
Sodium, Total	417		mg/kg	108

Attn: Mr. Kevin Axe

Date: Friday July 28th, 2000

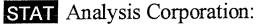
RE: **B9 4-5**

Project # 10512-004-004-9999
Lab ID: **9A07G129-001**Sample Date: 07/12/00
Date Received: 07/14/00

Parameters	Result		Units	Reporting Limit
Nickel, Total	29.6		mg/kg	1.1
Lead, Total	15.5		mg/kg	0.54
Antimony, Total	2.2	u	mg/kg	2.2
Selenium, Total	0.54	u	mg/kg	0,54
Thallium, Total	1.1	u	mg/kg	1.1
Vanadium, Total	23.5		mg/kg	0.54
Zinc, Total	42.5		mg/kg	1.1

Attn: Mr. Kevin Axe

Date: Friday July 28th, 2000


RE: **B9 4-5**

Project # 10512-004-004-9999 Lab ID: **9A07G129-002**

Sample Date: 07/12/00 Date Received: 07/14/00

SPLP Leachate Analysis Report

Parameters	Result	Units	Reporting Limit
Chromium, SPLP	0.050 u	mg/L	0.050
Lead, SPLP	0.0075 u	mg/L	0.0075

Analytical Report

Client

Roy F. Weston

Project ID:

10512 004 004, Peoples Gas

B10, 6-8 Sample Number:

STAT Project No.: 700735

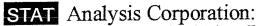
STAT Sample No.: 908323

Date Received:

7/14/00

Date Taken:

7/13/00


Time Taken:

15:15

Date Reported:

7/25/00

Analyte	Detection Limit	Result	Units
Solids, Total		81.18	%
Volatile Organic Compounds Met	thod 5035/8260B		
Analysis Date: 7/19/00			
Acetone	0.025	0.100 J	mg/Kg
Benzene	0.005	0.0105	mg/Kg
Bromodichloromethane	0.005	< 0.005	mg/Kg
Bromoform	0005	< 0.005	mg/Kg
Bromomethane	0.010	< 0.010	mg/Kg
2-Butanone	0.010	< 0.010 V	mg/Kg
Carbon Disulfide	0.005	0.006万	mg/Kg
Carbon Tetrachloride	0,005	< 0.005 VS	mg/Kg
Chlorobenzene	0.005	< 0.005	mg/Kg
Chlorodibromomethane	0.005	< 0.005	mg/Kg
Chloroethane	0.010	0.061	mg/Kg
Chloroform	0.005	< 0.005	mg/Kg
Chloromethane	0.010	$< 0.010 \text{V}^{\text{J}}$	mg/Kg
1,1-Dichloroethane	0.005	0.064 3	mg/Kg
1,2-Dichloroethane	0.005	< 0.005 07	mg/Kg
1,1-Dichloroethene	0.005	< 0.005	mg/Kg
cis-1,2-Dichloroethene	0.005	< 0.005	mg/Kg
trans-1,2-Dichloroethene	0.005	< 0.005	mg/Kg
1,2-Dichloropropane	0.005	< 0.005	mg/Kg
cis-1,3-Dichloropropene	0.005	< 0.005	mg/Kg
trans-1,3-Dichloropropene	0.005	< 0.005	mg/Kg
Ethyl Benzene	0.005	< 0.005	mg/Kg
2-Hexanone	0.010	< 0.010	mg/Kg
4-Methyl-2-pentanone	0.010	< 0.010	mg/Kg
Methylene Chloride	0.010	< 0.010	mg/Kg
Styrene	0.005	< 0.005	mg/Kg
1,1,2,2-Tetrachloroethane	0.005	< 0.005	mg/Kg
Tetrachloroethene	0.005	< 0.005	mg/Kg
Toluene	0,005	< 0.005 5	mg/Kg

Analytical Report

Client

Roy F. Weston

Project ID:

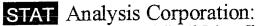
10512 004 004, Peoples Gas

Sample Number:

B10, 6-8 STAT Project No.: 700735

STAT Sample No.: 908323

Date Received:


7/14/00 7/13/00

Date Taken: Time Taken:

15:15

Date Reported:

Analyte	Detection Limit	Result	Units
1,1,1-Trichloroethane	0.005	< 0.005 灯	mg/Kg
1,1,2-Trichloroethane	0.005	< 0.005	mg/Kg
Trichloroethene	0.005	< 0.005	mg/Kg
Vinyl Acetate	0.010	< 0.010	mg/Kg
Vinyl Chloride	0.010	< 0.010	mg/Kg
Xylenes (total)	0.005	< 0.005 VJ	mg/Kg
Base-Neutral/Acid Compounds Met	hod 8270C		
Preparation Date: 7/19/00			
Analysis Date: 7/20/00			
Acenaphthene	0.330	< 0.330 W	mg/Kg
Acenaphthylene	0.330	< 0.330 /	mg/Kg
Anthracene	0.330	< 0.330	mg/Kg
Benzidine	0,330	< 0.330	mg/Kg
Benzo[a]anthracene	0.330	< 0.330	mg/Kg
Benzo[b]fluoranthene	0.330	< 0.330	mg/Kg
Benzo[k]fluoranthene	0.330	< 0.330	mg/Kg
Benzo[g,h,i]perylene	0.330	< 0.330	mg/Kg
Benzo[a]pyrene	0.330	< 0.330	mg/Kg
Benzoic Acid	0.330	< 0.330	mg/Kg
Benzyl alcohol	0.330	< 0.330	mg/Kg
bis(2-Chloroethoxy)methane	0.330	< 0.330	mg/Kg
bis(2-Chloroethyl)ether	0.330	< 0.330	mg/Kg
bis(2-Chloroisopropyl)ether	0.330	< 0.330	mg/Kg
bis(2-Ethylhexyl)phthalate	0.330	< 0.330	mg/Kg
4-Bromophenyl-phenylether	0.330	< 0.330	mg/Kg
Butylbenzylphthalate	0.330	< 0.330	mg/Kg
4-Chloroaniline	0.330	< 0.330	mg/Kg
4-Chloro-3-methylphenol	0.330	< 0.330	mg/Kg
2-Chloronaphthalene	0.330	< 0.330	mg/Kg
2-Chlorophenol	0.330	< 0.330	mg/Kg
4-Chlorophenyl-phenylether	0,330	< 0.330	mg/Kg
Chrysene	0.330	< 0.330 V)	mg/Kg

Analytical Report

Client:

Roy F. Weston

Project ID:

10512 004 004, Peoples Gas

Sample Number:

B10, 6-8

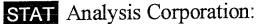
STAT Project No.: 700735

STAT Sample No.: 908323

Date Received:

7/14/00

Date Taken:


7/13/00

Time Taken:

15:15

Date Reported:

Analyte	Detection Limit	Result	Units
Dibenz[a,h]anthracene	0.330	< 0.330	¹⁾ mg/Kg
Dibenzofuran	0.330	< 0.330	mg/Kg
1,2-Dichlorobenzene	0.330	< 0.330	mg/Kg
1,3-Dichlorobenzene	0.330	< 0.330	mg/Kg
1,4-Dichlorobenzene	0.330	< 0.330	mg/Kg
3,3'-Dichlorobenzidine	0,660	< 0.660	mg/Kg
2,4-Dichlorophenol	0,330	< 0.330	mg/Kg
Diethylphthalate	0.330	< 0.330	mg/Kg
2,4-Dimethylphenol	0.330	< 0.330	mg/Kg
Dimethylphthalate	0.330	< 0.330	mg/Kg
Di-n-butylphthalate	0.330	< 0.330	mg/Kg
4,6-Dinitro-2-methylphenol	1.60	< 1.60	mg/Kg
2,4-Dinitrophenol	1.60	< 1.60	mg/Kg
2,4-Dinitrotoluene	0.330	< 0.330	mg/Kg
2,6-Dinitrotoluene	0.330	< 0.330	mg/Kg
Di-n-octylphthalate	0.330	< 0.330	mg/Kg
Fluoranthene	0.330	< 0.330	mg/Kg
Fluorene	0.330	< 0.330	mg/Kg
Hexachlorobenzene	0.330	< 0.330	mg/Kg
Hexachlorobutadiene	0.330	< 0.330	mg/Kg
Hexachlorocyclopentadiene	0.330	< 0.330	mg/Kg
Hexachloroethane	0.330	< 0.330	mg/Kg
Indeno[1,2,3-cd]pyrene	0,330	< 0.330	mg/Kg
Isophorone	0.330	< 0.330	mg/Kg
2-Methylnaphthalene	0.330	< 0.330	mg/Kg
2-Methylphenol	0.330	< 0.330	mg/Kg
3&4-Methylphenol	0.330	< 0.330	mg/Kg
Naphthalene	0.330	< 0.330	mg/Kg
2-Nitroaniline	1.60	< 1.60	mg/Kg
3-Nitroaniline	160	< 1.60	mg/Kg
4-Nitroaniline	160	< 1.60	mg/Kg
Nitrobenzene	0.330	< 0.330	mg/Kg
2-Nitrophenol	160	< 1.60) mg/Kg

Analytical Report

Client:

Roy F. Weston

Project ID:

10512 004 004, Peoples Gas

Date Received:

7/14/00

Sample Number:

B10, 6-8

Date Taken:

7/13/00

STAT Project No.: 700735

Time Taken:

15:15

STAT Sample No.: 908323

Date Reported:

Analyte	Detection Limit	Result	Units
4 Nitranhanal	1.60	< 1.60 VS	mg/Kg
4-Nitrophenol N-Nitrosodimethylamine	0.330	< 0.330	mg/Kg
N-Nitroso-di-n-propylamine	0.330	< 0.330	mg/Kg
n-Nitrosodiphenylamine	0.330	< 0.330	mg/Kg
Pentachlorophenol	160	< 1.60	mg/Kg
Phenanthrene	0.330	< 0,330	mg/Kg
Phenol	0.330	< 0.330	mg/Kg
Pyrene	0.330	< 0.330	mg/Kg
1,2,4-Trichlorobenzene	0.330	< 0.330	mg/Kg
2,4,5-Trichlorophenol	0.660	< 0.660 \(\)	mg/Kg
2,4,6-Trichlorophenol	0.330	< 0.330 <i>方</i>	mg/Kg

Attn: Mr. Kevin Axe

Date: Friday July 21st, 2000

RE: B10 6-8
Project # 10512-004-004-9999
Lab ID: 9A07G130-011
Sample Date: 07/13/00 Date Received: 07/14/00

Inorganic Data Report

Parameters	Result	Units	Reporting Limit
рН	8.2	pH@21.2	+-0.20

Attn: Mr. Kevin Axe

Date: Friday July 28th, 2000

RE: B10 6-8 Project # 10512-004-004-9999 Lab ID: 9A07G130-011 Sample Date: 07/13/00 Date Received: 07/14/00

Parameters	Result		Units	Reporting Limit
% Solids	81.4		%	0.10
Silver, Total	0.50	u	mg/kg	0.50
Aluminum, Total	11200		mg/kg	20.0
Arsenic, Total	6.6		mg/kg	1.0
Barium, Total	43.7		mg/kg	1.0
Beryllium, Total	0.65		mg/kg	0.40
Calcium, Total	47500		mg/kg	10
Cadmium, Total	0.40		mg/kg	0.20
Cobalt, Total	12.2		mg/kg	0.50
Chromium, Total	19.1		mg/kg	1.0
Copper, Total	24.9		mg/kg	1.0
Iron, Total	21200		mg/kg	5.0
Mercury, Total	0.04	u	mg/kg	0.04
Potassium, Total	3800		mg/kg	49.9
Magnesium, Total	23700		mg/kg	10
Manganese, Total	369		mg/kg	0.50
Sodium, Total	497		mg/kg	99.9

Attn: Mr. Kevin Axe

Date: Friday July 28th, 2000

RE: B10 6-8 Project # 10512-004-004-9999 Lab ID: 9A07G130-011 Sample Date: 07/13/00 Date Received: 07/14/00

Parameters	Result	Unit	Reporting Limit
Nickel, Total	30.9	mg/k	g 1.0
Lead, Total	11.3	mg/k	g 0.50
Antimony, Total	2.0	u mg/k	g 2.0
Selenium, Total	0.50	u mg/k	g 0.50
Thallium, Total	1.0	u mg/k	g 1.0
Vanadium, Total	21.3	mg/k	g 0.50
Zinc, Total	38.3	mg/k	g 1.0

Attn: Mr. Kevin Axe

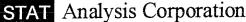
Date: Friday July 28th, 2000

RE: B10 6-8

Project # 10512-004-004-9999
Lab ID: **9A07G130-012**Sample Date: 07/13/00
Date Received: 07/14/00

SPLP Leachate Analysis Report

Parameters	Result	Units	Reporting Limit
Chromium, SPLP	0.050 u	mg/L	0.050
Lead, SPLP	0.0075	mg/L	0.0075


Attn: Mr. Kevin Axe

Date: Friday July 21st, 2000

RE: SS11 0-2 Project # 10512-004-004-9999 Lab ID: 9A07G130-019 Sample Date: 07/14/00 Date Received: 07/14/00

Inorganic Data Report

Parameters	Result	Units	Reporting Limit
рН	7.5	pH@20.6	+-0.20

Analytical Report

Client:

Roy F. Weston

Project ID:

10512 004 004, Peoples Gas

Sample Number:

SS11, 0-2

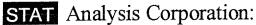
STAT Project No.: 700735

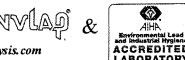
STAT Sample No.: 908326

Date Received:

7/14/00

Date Taken:


7/14/00


Time Taken:

16:15

Date Reported:

Analyte	Detection Limit	Result	Units
Solids, Total		76.95	%
Volatile Organic Compounds Metho	od 5035/8260B		
Analysis Date: 7/19/00			_
Acetone	0.025	^(ک) 0.025 ×	mg/Kg
Benzene	0.005	0.014	mg/Kg
Bromodichloromethane	0.005	< 0.005	mg/Kg
Bromoform	0.005	< 0.005	mg/Kg
Bromomethane	0.010	< 0.010	mg/Kg
2-Butanone	0.010	< 0.010	mg/Kg
Carbon Disulfide	0.005	0.005	mg/Kg
Carbon Tetrachloride	0.005	< 0.005	mg/Kg
Chlorobenzene	0.005	< 0.005	mg/Kg
Chlorodibromomethane	0.005	< 0.005	mg/Kg
Chloroethane	0.010	< 0.010	mg/Kg
Chloroform	0.005	< 0.005	mg/Kg
Chloromethane	0.010	< 0.010	mg/Kg
1,1-Dichloroethane	0.005	< 0.005	mg/Kg
1,2-Dichloroethane	0.005	< 0.005	mg/Kg
1,1-Dichloroethene	0.005	< 0.005	mg/Kg
cis-1,2-Dichloroethene	0.005	< 0.005	mg/Kg
trans-1,2-Dichloroethene	0.005	< 0.005	mg/Kg
1,2-Dichloropropane	0,005	< 0.005	mg/Kg
cis-1,3-Dichloropropene	0.005	< 0.005	mg/Kg
trans-1,3-Dichloropropene	0.005	< 0.005	mg/Kg
Ethyl Benzene	0.005	< 0.005	mg/Kg
2-Hexanone	0.010	< 0.010	mg/Kg
4-Methyl-2-pentanone	0.010	< 0.010	mg/Kg
Methylene Chloride	0.010	< 0.010	mg/Kg
Styrene	0.005	< 0.005	mg/Kg
1,1,2,2-Tetrachloroethane	0.005	< 0.005	_mg/Kg
Tetrachloroethene	- 0.005	< 0.005 US	mg/Kg
Toluene	0.005	< 0.005	mg/Kg

Client:

Roy F. Weston

Project ID:

10512 004 004, Peoples Gas

Sample Number:

Xylenes (total)

SS11, 0-2

STAT Project No.: 700735

STAT Sample No. 908326

Date Received:

7/14/00

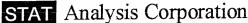
Date Taken

7/14/00 16:15

Time Taken: Date Reported:

< 0.005

mg/Kg


7/25/00

Analyte	Detection Limit	Result	Units
1,1,1-Trichloroethane	0.005	< 0.005	mg/Kg
1,1,2-Trichloroethane	0.005	< 0.005	mg/Kg
Trichloroethene	0.005	0.007 ブ	mg/Kg
Vinyl Acetate	0.010	< 0.010	mg/Kg
Vinyl Chloride	0.010	< 0.010	mg/Kg

0.005

Base-Neutral/Acid Compounds Method 8270C

Base-Neutral/Acid Compounds Met	110u 8270C		
Preparation Date: 7/19/00			
Analysis Date: 7/20/00			
Acenaphthene	0.330	< 0.330 V [≾]	mg/Kg
Acenaphthylene	0.330	0.434	mg/Kg
Anthracene	0.330	< 0.330	mg/Kg
Benzidine	0.330	< 0.330	mg/Kg
Benzo[a]anthracene	0,330	< 0.330	mg/Kg
Benzo[b]fluoranthene	0.330	< 0.330	mg/Kg
Benzo[k]fluoranthene	0.330	< 0.330	mg/Kg
Benzo[g,h,i]perylene	0.330	< 0.330	mg/Kg
Benzo[a]pyrene	0.330	< 0.330	mg/Kg
Benzoic Acid	0.330	< 0.330	mg/Kg
Benzyl alcohol	0.330	< 0.330	mg/Kg
bis(2-Chloroethoxy)methane	0.330	< 0.330	mg/Kg
bis(2-Chloroethyl)ether	0.330	< 0.330	mg/Kg
bis(2-Chloroisopropyl)ether	0.330	< 0.330	mg/Kg
bis(2-Ethylhexyl)phthalate	0.330	< 0.330	mg/Kg
4-Bromophenyl-phenylether	0.330	< 0.330	mg/Kg
Butylbenzylphthalate	0.330	< 0.330	mg/Kg
4-Chloroaniline	0.330	< 0.330	mg/Kg
4-Chloro-3-methylphenol	0330	< 0.330	mg/Kg
2-Chloronaphthalene	0.330	< 0.330	mg/Kg
2-Chlorophenol	0.330	< 0.330 US	mg/Kg
4-Chlorophenyl-phenylether	0.330	< 0.330	mg/Kg
Chrysene	0.330	< 0.330	mg/Kg

Analytical Report

Client

Roy F. Weston

Project ID:

10512 004 004, Peoples Gas

Sample Number:

SS11, 0-2

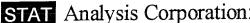
STAT Project No.: 700735

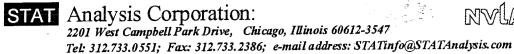
STAT Sample No.: 908326

Date Received:

7/14/00

Date Taken:


7/14/00


Time Taken:

16:15

Date Reported:

Analyte	Detection Limit	Result	Units
Dibenz[a,h]anthracene	0.330	< 0.330	mg/Kg
Dibenzofuran	0.330	< 0.330	mg/Kg
1,2-Dichlorobenzene	0.330	< 0.330	mg/Kg
1,3-Dichlorobenzene	0.330	< 0.330	mg/Kg
1,4-Dichlorobenzene	0.330	< 0.330 US	mg/Kg
3,3'-Dichlorobenzidine	0.660	< 0.660	mg/Kg
2,4-Dichlorophenol	0.330	< 0.330	mg/Kg
Diethylphthalate	0.330	< 0.330	mg/Kg
2,4-Dimethylphenol	0.330	< 0.330	mg/Kg
Dimethylphthalate	0.330	< 0.330	mg/Kg
Di-n-butylphthalate	0.330	< 0.330	mg/Kg
4,6-Dinitro-2-methylphenol	1.60	< 1.60	mg/Kg
2,4-Dinitrophenol	160	< 1.60	mg/Kg
2,4-Dinitrotoluene	0.330	< 0.330	mg/Kg
2,6-Dinitrotoluene	0.330	< 0.330	mg/Kg
Di-n-octylphthalate	0.330	< 0.330	mg/Kg
Fluoranthene	0.330	< 0.330	mg/Kg
Fluorene	0.330	< 0.330	mg/Kg
Hexachlorobenzene	0.330	< 0.330	mg/Kg
Hexachlorobutadiene	0.330	< 0.330	mg/Kg
Hexachlorocyclopentadiene	0.330	< 0.330 V	mg/Kg
Hexachloroethane	0.330	< 0.330	mg/Kg
Indeno[1,2,3-cd]pyrene	0.330	< 0.330	mg/Kg
Isophorone	0.330	< 0.330	mg/Kg
2-Methylnaphthalene	0.330	< 0.330	mg/Kg
2-Methylphenol	0.330	< 0.330 VJ	mg/Kg
3&4-Methylphenol	0.330	< 0.330	mg/Kg
Naphthalene	0.330	< 0.330	mg/Kg
2-Nitroaniline	1.60	< 1.60	mg/Kg
3-Nitroaniline	1.60	< 1.60	mg/Kg
4-Nitroaniline	1.60	< 1.60	mg/Kg
Nitrobenzene	0.330	< 0.330	mg/Kg
2-Nitrophenol	1.60	< 1.60	mg/Kg

Analytical Report

Client:

Roy F. Weston

Project ID:

10512 004 004, Peoples Gas

Date Received:

7/14/00

Sample Number

SS11, 0-2

Date Taken:

7/14/00 16:15

STAT Project No.: 700735

Time Taken: Date Reported

7/25/00

STAT Sample No.: 908326

Analyte	Detection Limit	Result	Units
4-Nitrophenol	1.60	< 1.60	mg/Kg
N-Nitrosodimethylamine	0.330	< 0.330	_ mg/Kg
N-Nitroso-di-n-propylamine	0.330	< 0.330 V	mg/Kg
n-Nitrosodiphenylamine	0.330	< 0.330	mg/Kg
Pentachlorophenol	1,60	< 1.60	mg/Kg
Phenanthrene	0.330	< 0.330	mg/Kg
Phenol	0.330	< 0.330	mg/Kg
Pyrene	0.330	< 0.330	_ mg/Kg
1,2,4-Trichlorobenzene	0.330	< 0.330 D) mg/Kg
2,4,5-Trichlorophenol	0,660	< 0.660	mg/Kg
2,4,6-Trichlorophenol	0.330	< 0.330	mg/Kg

Attn: Mr. Kevin Axe

Date: Friday July 28th, 2000

RE: SS11 0-2 Project # 10512-004-004-9999 Lab ID: 9A07G130-019 Sample Date: 07/14/00 Date Received: 07/14/00

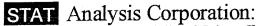
Parameters	Result	Units	Reporting Limit
% Solids	74.6	%	0.10
Silver, Total	0.52 ι	u mg/kg	0.52
Aluminum, Total	13000	mg/kg	20.8
Arsenic, Total	5.4	mg/kg	1.0
Barium, Total	66.1	mg/kg	1.0
Beryllium, Total	1.2	mg/kg	0.42
Calcium, Total	12200	mg/kg	10.4
Cadmium, Total	0.41	mg/kg	0.21
Cobalt, Total	9.9	mg/kg	0.52
Chromium, Total	20.5	mg/kg	1.0
Copper, Total	29.3	mg/kg	1.0
Iron, Total	19100	mg/kg	5.2
Mercury, Total	0.05	mg/kg	0.04
Potassium, Total	2950	mg/kg	52.0
Magnesium, Total	8460	mg/kg	10.4
Manganese, Total	204	mg/kg	0.52
Sodium, Total	605	mg/kg	104

Attn: Mr. Kevin Axe

Date: Friday July 28th, 2000

RE. SS11 0-2 Project # 10512-004-004-9999 Lab ID: 9A07G130-019 Sample Date: 07/14/00 Date Received: 07/14/00

Parameters	Result		Units	Reporting Limit
Nickel, Total	29.8		mg/kg	1.0
Lead, Total	48.5		mg/kg	0.52
Antimony, Total	2.1	u	mg/kg	2.1
Selenium, Total	0.81		mg/kg	0.52
Thallium, Total	1.0	u	mg/kg	1.0
Vanadium, Total	28.4		mg/kg	0.52
Zinc, Total	85.8		mg/kg	1.0


Attn: Mr. Kevin Axe

Date: Friday July 28th, 2000

RE: SS11 0-2 Project # 10512-004-004-9999 Lab ID: 9A07G130-020 Sample Date: 07/14/00 Date Received: 07/14/00

SPLP Leachate Analysis Report

Parameters	Result	Units	Reporting Limit
Chromium, SPLP	0.050 u	mg/L	0.050
Lead, SPLP	0.039	mg/L	0.0075

Analytical Report

Client:

Roy F. Weston

Project ID:

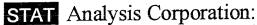
10512 004 004, Peoples Gas

Sample Number:

B11 4-5 STAT Project No.: 700728

STAT Sample No.: 908261

Date Received: Date Taken:


7/13/00

Time Taken

7/12/00 17:40

Date Reported:

ample No.: 908201		Date Reported:		
Analyte	Detection Limit	Result	Units	
Solids, Total		79.32	%	
Volatile Organic Compounds N Analysis Date: 7/18/00	1ethod 5035/8260B			
Acetone	0.025	< 0.025	mg/Kg	
Benzene	0.005	< 0.005	mg/Kg	
Bromodichloromethane	0.005	< 0.005	mg/Kg	
Bromoform	0.005	< 0.005	mg/Kg	
Bromomethane	0.010	< 0.010	mg/Kg	
2-Butanone	0.010	< 0.010	mg/Kg	
Carbon Disulfide	0.005	< 0.005	mg/Kg	
Carbon Tetrachloride	0,005	< 0.005	mg/Kg	
Chlorobenzene	0.005	< 0.005	mg/Kg	
Chlorodibromomethane	0.005	< 0.005	mg/Kg	
Chloroethane	0.010	< 0.010	mg/Kg	
Chloroform	0.005	< 0.005	mg/Kg	
Chloromethane	0.010	< 0.010	mg/Kg	
1,1-Dichloroethane	0.005	< 0.005	mg/Kg	
1,2-Dichloroethane	0005	< 0.005	mg/Kg	
1,1-Dichloroethene	0.005	< 0.005	mg/Kg	
cis-1,2-Dichloroethene	0.005	< 0.005	mg/Kg	
trans-1,2-Dichloroethene	0.005	< 0.005	mg/Kg	
1,2-Dichloropropane	0.005	< 0.005	mg/Kg	
cis-1,3-Dichloropropene	0.005	< 0.005	mg/Kg	
trans-1,3-Dichloropropene	0.005	< 0.005	mg/Kg	
Ethyl Benzene	0,005	< 0.005	mg/Kg	
2-Hexanone	0.010	< 0.010	mg/Kg	
4-Methyl-2-pentanone	0.010	< 0.010	mg/Kg	
Methylene Chloride	0.010	< 0.010	mg/Kg	
Styrene	0.005	< 0.005	mg/Kg	
1,1,2,2-Tetrachloroethane	0.005	< 0.005	mg/Kg	
Tetrachloroethene	0.005	< 0.005	mg/Kg	
Toluene	0.005	< 0.005	mg/Kg	

Analytical Report

Client:

Roy F. Weston

Project ID:

10512 004 004, Peoples Gas

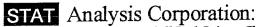
Sample Number:

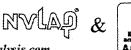
B11 4-5

STAT Sample No.: 908261

STAT Project No.: 700728

Date Received:


7/13/00 7/12/00


Date Taken:
Time Taken:

17:40

Date Reported:

Analyte	Detection Limit	Result	Units
1,1,1-Trichloroethane	0.005	< 0.005	mg/Kg
1,1,2-Trichloroethane	0.005	< 0.005	mg/Kg
Trichloroethene	0.005	< 0.005	mg/Kg
Vinyl Acetate	0.010	< 0.010	mg/Kg
Vinyl Chloride	0.010	< 0.010	mg/Kg
Xylenes (total)	0.005	< 0.005	mg/Kg
Base-Neutral/Acid Compounds Met	hod 8270C		
Preparation Date: 7/18/00			
Analysis Date: 7/19/00			
Acenaphthene	0.330	< 0.330 VJ	mg/Kg
Acenaphthylene	0.330	< 0.330	mg/Kg
Anthracene	0.330	< 0.330	mg/Kg
Benzidine	0.330	< 0.330	mg/Kg
Benzo[a]anthracene	0.330	< 0.330	mg/Kg
Benzo[b]fluoranthene	0.330	< 0.330	mg/Kg
Benzo[k]fluoranthene	0.330	< 0.330	mg/Kg
Benzo[g,h,i]perylene	0.330	< 0.330	mg/Kg
Benzo[a]pyrene	0.330	< 0.330	mg/Kg
Benzoic Acid	0.330	< 0.330	mg/Kg
Benzyl alcohol	0.330	< 0.330	mg/Kg
bis(2-Chloroethoxy)methane	0.330	< 0.330	mg/Kg
bis(2-Chloroethyl)ether	0.330	< 0.330	mg/Kg
bis(2-Chloroisopropyl)ether	0.330	< 0.330	mg/Kg
bis(2-Ethylhexyl)phthalate	0.330	< 0.330	mg/Kg
4-Bromophenyl-phenylether	0.330	< 0.330	mg/Kg
Butylbenzylphthalate	0.330	< 0.330	mg/Kg
4-Chloroaniline	0.330	< 0.330	mg/Kg
4-Chloro-3-methylphenol	0.330	< 0.330	mg/Kg
2-Chloronaphthalene	0.330	< 0.330	mg/Kg
2-Chlorophenol	0.330	< 0.330	mg/Kg
4-Chlorophenyl-phenylether	0.330	< 0.330	mg/Kg
Chrysene	0.330	< 0.330	mg/Kg

Analytical Report

Client:

Roy F. Weston

Project ID:

10512 004 004, Peoples Gas

Sample Number:

B11 4-5

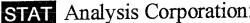
STAT Project No.: 700728

STAT Sample No.: 908261

Date Received:

7/13/00

Date Taken:


7/12/00

Time Taken:

17:40

Date Reported:

Analyte	Detection Limit	Result	Units
Dibenz[a,h]anthracene	0.330	< 0.330	mg/Kg
Dibenzofuran	0.330	< 0.330	mg/Kg
1,2-Dichlorobenzene	0.330	< 0.330	mg/Kg
1,3-Dichlorobenzene	0.330	< 0.330	mg/Kg
1,4-Dichlorobenzene	0.330	< 0.330 VJ	mg/Kg
3,3'-Dichlorobenzidine	0.660	< 0.660	mg/Kg
2,4-Dichlorophenol	0.330	< 0.330	mg/Kg
Diethylphthalate	0.330	< 0.330	mg/Kg
2,4-Dimethylphenol	0.330	< 0.330	mg/Kg
Dimethylphthalate	0.330	< 0.330	mg/Kg
Di-n-butylphthalate	0.330	< 0.330	mg/Kg
4,6-Dinitro-2-methylphenol	1,60	< 1.60	mg/Kg
2,4-Dinitrophenol	1.60	< 1.60	mg/Kg
2,4-Dinitrotoluene	0.330	< 0.330	mg/Kg
2,6-Dinitrotoluene	0.330	< 0.330	mg/Kg
Di-n-octylphthalate	0.330	< 0.330	mg/Kg
Fluoranthene	0.330	< 0.330	mg/Kg
Fluorene	0.330	< 0.330	mg/Kg
Hexachlorobenzene	0.330	< 0.330	mg/Kg
Hexachlorobutadiene	0.330	< 0.330	mg/Kg
Hexachlorocyclopentadiene	0.330	< 0.330	mg/Kg
Hexachloroethane	0.330	< 0.330	mg/Kg
Indeno[1,2,3-cd]pyrene	0.330	< 0.330	mg/Kg
Isophorone	0.330	< 0.330	mg/Kg
2-Methylnaphthalene	0.330	< 0.330	mg/Kg
2-Methylphenol	0.330	< 0.330	mg/Kg
3&4-Methylphenol	0.330	< 0.330	mg/Kg
Naphthalene	0.330	< 0.330	mg/Kg
2-Nitroaniline	1.60	< 1.60	mg/Kg
3-Nitroaniline	1.60	< 1.60	mg/Kg
4-Nitroaniline	1.60	< 1.60	mg/Kg
Nitrobenzene	0.330	< 0.330	mg/Kg
2-Nitrophenol	1 60	< 1.60	mg/Kg

Analytical Report

Client:

Roy F. Weston

Project ID:

10512 004 004, Peoples Gas

Date Received:

7/13/00

Sample Number:

B11 4-5

Date Taken:

7/12/00

STAT Project No.: 700728

Time Taken:

17:40

STAT Sample No.: 908261

Date Reported:

Analyte	Detection Limit	Result	Units
4-Nitrophenol	1.60	< 1,60	mg/Kg
N-Nitrosodimethylamine	0.330	< 0.330 VJ	mg/Kg
N-Nitroso-di-n-propylamine	0.330	< 0.330	mg/Kg
n-Nitrosodiphenylamine	0.330	< 0.330	mg/Kg
Pentachlorophenol	1.60	< 1.60	mg/Kg
Phenanthrene	0.330	< 0.330	mg/Kg
Phenol	0.330	< 0.330	mg/Kg
Pyrene	0.330	< 0.330	mg/Kg
1,2,4-Trichlorobenzene	0.330	< 0.330 VJ	mg/Kg
2,4,5-Trichlorophenol	0.660	< 0.660	mg/Kg
2,4,6-Trichlorophenol	0.330	< 0.330	mg/Kg

Attn: Mr. Kevin Axe

Date: Tuesday July 25th, 2000

RE: **B11 4-5**

Project # 10512-004-004-9999 Lab ID: **9A07G129-003** Sample Date: 07/12/00 Date Received: 07/14/00

Inorganic Data Report

Parameters	Result	Units	Reporting Limit
рН	8.0	pH@20.9	+-0.20

Attn: Mr. Kevin Axe

Date: Friday July 28th, 2000

RE: B11 4-5 Project # 10512-004-004-9999 Lab ID: 9A07G129-003 Sample Date: 07/12/00 Date Received: 07/14/00

Parameters	Result		Units	Reporting Limit
% Solids	79.7		%	0.10
Silver, Total	0.53	u	mg/kg	053
Aluminum, Total	11400		mg/kg	21.1
Arsenic, Total	2.6		mg/kg	1.1
Barium, Total	34.5		mg/kg	1.1
Beryllium, Total	0.58		mg/kg	0.42
Calcium, Total	44100		mg/kg	10.5
Cadmium, Total	0.21	u	mg/kg	021
Cobalt, Total	9.2		mg/kg	0.53
Chromium, Total	18.8		mg/kg	1.1
Copper, Total	29.6		mg/kg	1.1
Iron, Total	14900		mg/kg	5.3
Mercury, Total	0.04	u	mg/kg	0.04
Potassium, Total	3630		mg/kg	52.7
Magnesium, Total	24700		mg/kg	10.5
Manganese, Total	345		mg/kg	0.53
Sodium, Total	395		mg/kg	105

Attn: Mr. Kevin Axe

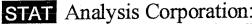
Date: Friday July 28th, 2000

RE: **B11 4-5**

Project # 10512-004-004-9999 Lab ID: **9A07G129-003** Sample Date: 07/12/00 Date Received: 07/14/00

Parameters	Result	Units	Reporting Limit
Nickel, Total	27.8	mg/kg	1.1
Lead, Total	13.2	mg/kg	0.53
Antimony, Total	2.1	u mg/kg	2.1
Selenium, Total	0.53	u mg/kg	0.53
Thallium, Total	1.1	u mg/kg	1.1
Vanadium, Total	23.3	mg/kg	0.53
Zinc, Total	45.5	mg/kg	1.1

Attn: Mr. Kevin Axe


Date: Friday July 28th, 2000

RE: **B11 4-5**

Project # 10512-004-004-9999 Lab ID: **9A07G129-004** Sample Date: 07/12/00 Date Received: 07/14/00

SPLP Leachate Analysis Report

Parameters	Result	Units	Reporting Limit
Chromium, SPLP	0.050 u	mg/L	0.050
Lead, SPLP	0.0075 u	mg/L	0.0075

Analytical Report

Client:

Roy F. Weston

Project ID:

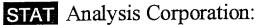
10512 004 004, Peoples Gas

Sample Number:

B17 7-8

STAT Project No.: 700728

STAT Sample No.: 908264


Date Received:

7/13/00

Date Taken: Time Taken: 7/13/00 9:20

Date Reported:

Analyte	Detection Limit	Result	Units
Solids, Total		74.77	%
Volatile Organic Compounds Metho	od 5035/8260B		
Analysis Date: 7/18/00			
Acetone	0.025	< 0.025 ^U	mg/Kg
Benzene	0.005	3.51 ブ	mg/Kg
Bromodichloromethane	0.005	< 0.005 VJ	mg/Kg
Bromoform	0.005	< 0.005 √∑	mg/Kg
Bromomethane	0.010	< 0.010 \	mg/Kg
2-Butanone	0.010	< 0.0104	mg/Kg
Carbon Disulfide	0.005	0.046 ブ	mg/Kg
Carbon Tetrachloride	0.005	< 0.005 Vブ	mg/Kg
Chlorobenzene	0.005	< 0.005	mg/Kg
Chlorodibromomethane	0.005	< 0.005	mg/Kg
Chloroethane	0.010	< 0.010	mg/Kg
Chloroform	0.005	< 0.005	mg/Kg
Chloromethane	0.010	< 0.010	mg/Kg
1,1-Dichloroethane	0.005	< 0.005	mg/Kg
1,2-Dichloroethane	0.005	< 0.005	mg/Kg
1,1-Dichloroethene	0.005	< 0.005	mg/Kg
cis-1,2-Dichloroethene	0.005	< 0.005	mg/Kg
trans-1,2-Dichloroethene	0.005	< 0.005	mg/Kg
1,2-Dichloropropane	0.005	< 0.005	mg/Kg
cis-1,3-Dichloropropene	0.005	< 0.005	mg/Kg
trans-1,3-Dichloropropene	0.005	< 0.005	mg/Kg
Ethyl Benzene	0.005	3.55	mg/Kg
2-Hexanone	0.010	< 0.010 1/3	mg/Kg
4-Methyl-2-pentanone	0.010	< 0.010	mg/Kg
Methylene Chloride	0.010	< 0.010	mg/Kg
Styrene	0.005	< 0.005	mg/Kg
1,1,2,2-Tetrachloroethane	0.005	< 0.005	mg/Kg
Tetrachloroethene	0.005	< 0.005 ^Y	mg/Kg
Toluene	0.005	0.106 ブ	mg/Kg

Analytical Report

Client

Roy F. Weston

Project ID:

10512 004 004, Peoples Gas

Sample Number:

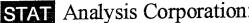
B17 7-8

STAT Project No.: 700728 STAT Sample No.: 908264 Date Received:

7/13/00

Date Taken: Time Taken: 7/13/00

Date Reported:


9:20 7/21/00

Analyte	Detection Limit	Result	Units
1,1,1-Trichloroethane	0.005	< 0.005 V	mg/Kg
1,1,2-Trichloroethane	0.005	< 0.005 $$	mg/Kg
Trichloroethene	0.005	0.007 🍼	mg/Kg
Vinyl Acetate	0.010	< 0.010 び	mg/Kg
Vinyl Chloride	0.010	< 0.010 ₩	mg/Kg
Xylenes (total)	0.005	6.20 5	mg/Kg

Base-Neutral/Acid Compounds Method 8270C

Preparation Date: 7/18/00

Preparation Date: //18/00			
Analysis Date: 7/19/00			
Acenaphthene	0.330	13.5 5	mg/Kg
Acenaphthylene	0.330	< 0.330 VJ	mg/Kg
Anthracene	0.330	16.6	mg/Kg
Benzidine	0.330	< 0.330 V)	mg/Kg
Benzo[a]anthracene	0.330	8.20	mg/Kg
Benzo[b]fluoranthene	0.330	1.31	mg/Kg
Benzo[k]fluoranthene	0.330	1.22	mg/Kg
Benzo[g,h,i]perylene	0.330	3.00	mg/Kg
Benzo[a]pyrene	0.330	2.09	mg/Kg
Benzoic Acid	0.330	< 0.330. VJ	mg/Kg
Benzyl alcohol	0.330	< 0.330	mg/Kg
bis(2-Chloroethoxy)methane	0.330	< 0.330	mg/Kg
bis(2-Chloroethyl)ether	0.330	< 0.330	mg/Kg
bis(2-Chloroisopropyl)ether	0.330	< 0.330	mg/Kg
bis(2-Ethylhexyl)phthalate	0.330	< 0.330	mg/Kg
4-Bromophenyl-phenylether	0.330	< 0.330	mg/Kg
Butylbenzylphthalate	0.330	< 0.330	mg/Kg
4-Chloroaniline	0,330	< 0.330	mg/Kg
4-Chloro-3-methylphenol	0.330	< 0.330	mg/Kg
2-Chloronaphthalene	0.330	< 0.330	mg/Kg
2-Chlorophenol	0.330	< 0.330	mg/Kg
4-Chlorophenyl-phenylether	0.330	< 0.330 ∨	mg/Kg
Chrysene	0.330	9.87 🐧	mg/Kg

Analytical Report

Client:

Roy F. Weston

Project ID:

10512 004 004, Peoples Gas

Sample Number:

B17 7-8

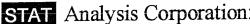
STAT Project No.: 700728

STAT Sample No.: 908264

Date Received:

7/13/00

Date Taken:


7/13/00

Time Taken:

9:20

Date Reported:

Analyte	Detection Limit	Result	Units
Dibenz[a,h]anthracene	0.330	$_{1.12}~\mathcal{J}$	mg/Kg
Dibenzofuran	0.330	< 0.330 VS	mg/Kg
1,2-Dichlorobenzene	0.330	< 0.330	mg/Kg
1,3-Dichlorobenzene	0.330	< 0.330	mg/Kg
1,4-Dichlorobenzene	0,330	< 0.330	mg/Kg
3,3'-Dichlorobenzidine	0.660	< 0.660	mg/Kg
2,4-Dichlorophenol	0.330	< 0.330	mg/Kg
Diethylphthalate	0.330	< 0.330	mg/Kg
2,4-Dimethylphenol	0.330	< 0.330	mg/Kg
Dimethylphthalate	0.330	< 0.330	mg/Kg
Di-n-butylphthalate	0.330	< 0.330	mg/Kg
4,6-Dinitro-2-methylphenol	1.60	< 1.60	mg/Kg
2,4-Dinitrophenol	160	< 1.60	mg/Kg
2,4-Dinitrotoluene	0.330	< 0.330	mg/Kg
2,6-Dinitrotoluene	0.330	< 0.330	mg/Kg
Di-n-octylphthalate	0.330	< 0.330	mg/Kg
Fluoranthene	0.330	15.3 J	mg/Kg
Fluorene	0.330	22.5 J	mg/Kg
Hexachlorobenzene	0.330	< 0.330 V	mg/Kg
Hexachlorobutadiene	0.330	< 0.330	mg/Kg
Hexachlorocyclopentadiene	0.330	< 0.330	mg/Kg
Hexachloroethane	0.330	< 0.330	mg/Kg
Indeno[1,2,3-cd]pyrene	0.330	1.84	mg/Kg
Isophorone	0.330	< 0.330 \(\sqrt{1} \)	mg/Kg
2-Methylnaphthalene	0.330	23.9 5	mg/Kg
2-Methylphenol	0.330	< 0.330 [√]	mg/Kg
3&4-Methylphenol	0.330	< 0.330 ₹	mg/Kg
Naphthalene	0.330	31.9	mg/Kg
2-Nitroaniline	1.60	< 1.60 VI	mg/Kg
3-Nitroaniline	1.60	< 1.60	mg/Kg
4-Nitroaniline	1.60	< 1.60	mg/Kg
Nitrobenzene	0.330	< 0.330	mg/Kg
2-Nitrophenol	1.60	< 1.60 ♥	mg/Kg

Analytical Report

Client:

Roy F. Weston

Project ID:

10512 004 004, Peoples Gas

Date Received:

7/13/00

Sample Number:

B17 7-8

Date Taken:

7/13/00

STAT Project No.: 700728

Time Taken:

9:20

STAT Sample No.: 908264

Date Reported:

Analyte	Detection Limit	Result	Units
4-Nitrophenol	1.60	< 1.60 V)	mg/Kg
N-Nitrosodimethylamine	0.330	< 0.330	mg/Kg
N-Nitroso-di-n-propylamine	0.330	< 0.330	mg/Kg
n-Nitrosodiphenylamine	0.330	< 0.330	mg/Kg
Pentachlorophenol	1.60	< 1.60	mg/Kg
Phenanthrene	0.330	59.0	mg/Kg
Phenol	0.330	< 0.330 V	mg/Kg
Pyrene	0.330	21.6	mg/Kg
1,2,4-Trichlorobenzene	0.330	< 0.330 ¹ / ₁	mg/Kg
2,4,5-Trichlorophenol	0.660	< 0.660	mg/Kg
2,4,6-Trichlorophenol	0.330	< 0.330 $$	mg/Kg

Attn: Mr. Kevin Axe

Date: Tuesday July 25th, 2000

RE: B17 7-8
Project # 10512-004-004-9999
Lab ID: 9A07G129-017
Sample Date: 07/13/00
Date Received: 07/14/00

Inorganic Data Report

Parameters	Result	Units	Reporting Limit
рН	7.8	pH@20.8	+-0.20

Attn: Mr. Kevin Axe

Date: Friday July 28th, 2000

RE: **B17 7-8**

Project # 10512-004-004-9999
Lab ID: **9A07G129-017**Sample Date: 07/13/00
Date Received: 07/14/00

Parameters	Result		Units	Reporting Limit
% Solids	75.4		%	0.10
Silver, Total	0.60	u	mg/kg	0.60
Aluminum, Total	10200		mg/kg	24.1
Arsenic, Total	5.7		mg/kg	1.2
Barium, Total	67.5		mg/kg	1.2
Beryllium, Total	0.66		mg/kg	0.48
Calcium, Total	37400		mg/kg	12.1
Cadmium, Total	0.53		mg/kg	0.24
Cobalt, Total	9.1		mg/kg	0.60
Chromium, Total	20.3		mg/kg	1.2
Copper, Total	26.6		mg/kg	1.2
Iron, Total	17800		mg/kg	6.0
Mercury, Total	0.06		mg/kg	0.04
Potassium, Total	2810		mg/kg	60.3
Magnesium, Total	22300		mg/kg	12.1
Manganese, Total	352		mg/kg	0.60
Sodium, Total	248		mg/kg	121

Attn: Mr. Kevin Axe

Date: Friday July 28th, 2000

RE: **B17 7-8**

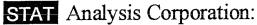
Project # 10512-004-004-9999 Lab ID: **9A07G129-017** Sample Date: 07/13/00 Date Received: 07/14/00

Parameters	Result	Units	Reporting Limit
Nickel, Total	23.7	mg/kg	1.2
Lead, Total	235	mg/kg	0.60
Antimony, Total	2.4 u	u mg/kg	2.4
Selenium, Total	0.60 ເ	u mg/kg	0.60
Thallium, Total	1.2 ι	u mg/kg	1.2
Vanadium, Total	23.2	mg/kg	0.60
Zinc, Total	268	mg/kg	1.2

To: RFW-Peoples Gas

Roy F. Weston, Incorporated 70 West Madison, Suite 1990 Chicago, IL 60602-4206

Attn: Mr. Kevin Axe


Date: Friday July 28th, 2000

RE: **B17 7-8**

Project # 10512-004-004-9999 Lab ID: **9A07G129-018** Sample Date: 07/13/00 Date Received: 07/14/00

SPLP Leachate Analysis Report

Parameters	Result	Units	Reporting Limit
Chromium, SPLP	0.050 u	mg/L	0.050
Lead, SPLP	0.0075 u	mg/L	0.0075

Analytical Report

Client

Roy F. Weston

Project ID:

10512 004 004, Peoples Gas

Sample Number:

B17 7-8 Dup

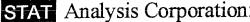
STAT Project No.: 700728

STAT Sample No.: 908265

Date Received:

7/13/00

Date Taken:


7/13/00

Time Taken:

9:20

Date Reported:

Analyte	Detection Limit	Result	Units
Solids, Total		74.55	%
Volatile Organic Compounds Metho	od 5035/8260B		
Analysis Date: 7/18/00		_	
Acetone	0.025	< 0.025 US	mg/Kg
Benzene	0.005	3.08	mg/Kg
Bromodichloromethane	0.005	< 0.005 VJ	mg/Kg
Bromoform	0.005	< 0.005 ^v / ₂	mg/Kg
Bromomethane	0.010	< 0.010	mg/Kg
2-Butanone	0.010	< 0.010 🗸	mg/Kg
Carbon Disulfide	0.005	0.049 J	mg/Kg
Carbon Tetrachloride	0.005	< 0.005 VJ	mg/Kg
Chlorobenzene	0.005	< 0.005 \	mg/Kg
Chlorodibromomethane	0.005	< 0.005	mg/Kg
Chloroethane	0.010	< 0.010	mg/Kg
Chloroform	0.005	< 0.005	mg/Kg
Chloromethane	0.010	< 0.010	mg/Kg
1,1-Dichloroethane	0.005	< 0.005	mg/Kg
1,2-Dichloroethane	0.005	< 0.005	mg/Kg
1,1-Dichloroethene	0.005	< 0.005	mg/Kg
cis-1,2-Dichloroethene	0.005	< 0.005	mg/Kg
trans-1,2-Dichloroethene	0.005	< 0.005	mg/Kg
1,2-Dichloropropane	0.005	< 0.005	mg/Kg
cis-1,3-Dichloropropene	0.005	< 0.005	mg/Kg
trans-1,3-Dichloropropene	0.005	< 0.005	mg/Kg
Ethyl Benzene	0.005	3.09	mg/Kg
2-Hexanone	0.010	< 0.010 ö	mg/Kg
4-Methyl-2-pentanone	0.010	< 0.010	mg/Kg
Methylene Chloride	0.010	< 0.010	mg/Kg
Styrene	0.005	< 0.005	mg/Kg
1,1,2,2-Tetrachloroethane	0.005	< 0.005	mg/Kg
Tetrachloroethene	0.005	< 0.005	mg/Kg
Toluene	0.005	0.145 5	mg/Kg

Analytical Report

Detection Limit

Client

Roy F. Weston

Project ID:

10512 004 004, Peoples Gas

Sample Number:

B17 7-8 Dup

STAT Project No.: 700728

STAT Sample No.: 908265

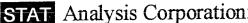
Analyte

Date Received:

Date Taken:

7/13/00 7/13/00

Time Taken:


9:20

Date Reported:

Units

Result

•			
1,1,1-Trichloroethane	0.005	< 0.005 ^{UJ}	mg/Kg
1,1,2-Trichloroethane	0.005	< 0.005 🗸	mg/Kg
Trichloroethene	0.005	0.007ブ	mg/Kg
Vinyl Acetate	0.010	< 0.010 ^V J	mg/Kg
Vinyl Chloride	0.010	< 0.010 ₩	mg/Kg
Xylenes (total)	0005	5.24 J	mg/Kg
Base-Neutral/Acid Compounds Method	8270C		
Preparation Date: 7/18/00			
Analysis Date: 7/19/00			
Acenaphthene	0.330	18.1 ブ	mg/Kg
Acenaphthylene	0.330	< 0.330	mg/Kg
Anthracene	0.330	16.1	mg/Kg
Benzidine	0.330	< 0.330	mg/Kg
Benzo[a]anthracene	0.330	11.0	mg/Kg
Benzo[b]fluoranthene	0.330	2.06	mg/Kg
Benzo[k]fluoranthene	0.330	1.18	mg/Kg
Benzo[g,h,i]perylene	0.330	5.48	mg/Kg
Benzo[a]pyrene	0.330	2.94	mg/Kg
Benzoic Acid	0.330	< 0.330	mg/Kg
Benzyl alcohol	0.330	< 0.330	mg/Kg
bis(2-Chloroethoxy)methane	0.330	< 0.330	mg/Kg
bis(2-Chloroethyl)ether	0.330	< 0.330	mg/Kg
bis(2-Chloroisopropyl)ether	0.330	< 0.330	mg/Kg
bis(2-Ethylhexyl)phthalate	0.330	< 0.330	mg/Kg
4-Bromophenyl-phenylether	0.330	< 0.330	mg/Kg
Butylbenzylphthalate	0.330	< 0.330	mg/Kg
4-Chloroaniline	0.330	< 0.330	mg/Kg
4-Chloro-3-methylphenol	0.330	< 0.330	mg/Kg
2-Chloronaphthalene	0.330	< 0.330	mg/Kg
2-Chlorophenol	0.,330	< 0.330	mg/Kg
4-Chlorophenyl-phenylether	0.330	< 0.330	mg/Kg
Chrysene	0.330	12.7	mg/Kg

Analytical Report

Client:

Roy F. Weston

Project ID:

10512 004 004, Peoples Gas

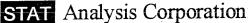
Sample Number:

B17 7-8 Dup

STAT Project No.: 700728

STAT Sample No.: 908265

Date Received:


7/13/00

Date Taken: Time Taken: 7/13/00 9:20

Date Reported:

7/2	1/	00
-----	----	----

Analyte	Detection Limit	Result	Units
Dibenz[a,h]anthracene	0.330	2.58	mg/Kg
Dibenzofuran	0.330	< 0.330	mg/Kg
1,2-Dichlorobenzene	0.330	< 0.330	mg/Kg
1,3-Dichlorobenzene	0.330	< 0.330	mg/Kg
1,4-Dichlorobenzene	0.330	< 0.330 VJ	mg/Kg
3,3'-Dichlorobenzidine	0.660	< 0.660	mg/Kg
2,4-Dichlorophenol	0.330	< 0.330	mg/Kg
Diethylphthalate	0.330	< 0.330	mg/Kg
2,4-Dimethylphenol	0.330	< 0.330	mg/Kg
Dimethylphthalate	0.330	< 0.330	mg/Kg
Di-n-butylphthalate	0.330	< 0.330	mg/Kg
4,6-Dinitro-2-methylphenol	1.60	< 1.60	mg/Kg
2,4-Dinitrophenol	1.60	< 1.60	mg/Kg
2,4-Dinitrotoluene	0.330	< 0.330	mg/Kg
2,6-Dinitrotoluene	0.330	< 0.330	mg/Kg
Di-n-octylphthalate	0.330	< 0.330	mg/Kg
Fluoranthene	0.330	18.7	mg/Kg
Fluorene	0.330	31.4	mg/Kg
Hexachlorobenzene	0.330	< 0.330	mg/Kg
Hexachlorobutadiene	0.330	< 0.330	mg/Kg
Hexachlorocyclopentadiene	0.330	< 0.330	mg/Kg
Hexachloroethane	0.330	< 0.330	mg/Kg
Indeno[1,2,3-cd]pyrene	0.330	3.83	mg/Kg
Isophorone	0.330	< 0.330	mg/Kg
2-Methylnaphthalene	0.330	32.7	mg/Kg
2-Methylphenol	0.330	< 0.330	mg/Kg
3&4-Methylphenol	0.330	< 0.330	mg/Kg
Naphthalene	0.330	44.9	mg/Kg
2-Nitroaniline	1.60	< 1.60	mg/Kg
3-Nitroaniline	1.60	< 1.60	mg/Kg
4-Nitroaniline	1.60	< 1.60	mg/Kg
Nitrobenzene	0.330	< 0.330	mg/Kg
2-Nitrophenol	1.60	< 1.60	mg/Kg

Analytical Report

Client:

Roy F. Weston

Project ID:

10512 004 004, Peoples Gas

Sample Number:

B17 7-8 Dup

STAT Project No.: 700728

STAT Sample No.: 908265

Date Received:

7/13/00

Date Taken

7/13/00

Time Taken:

9:20

Date Reported:

Analyte	Detection Limit	Result	Units
4-Nitrophenol	1.60	< 1.60	mg/Kg
N-Nitrosodimethylamine	0.330	< 0.330	mg/Kg
N-Nitroso-di-n-propylamine	0.330	< 0.330 ^{入丁}	mg/Kg
n-Nitrosodiphenylamine	0,330	< 0.330	mg/Kg
Pentachlorophenol	1.60	< 1.60	mg/Kg
Phenanthrene	0.330	74.8	mg/Kg
Phenol	0.330	< 0.330	mg/Kg
Pyrene	0.330	25.2	mg/Kg
1,2,4-Trichlorobenzene	0.330	< 0.330 VJ	mg/Kg
2,4,5-Trichlorophenol	0.660	< 0.660	mg/Kg
2.4.6-Trichlorophenol	0.330	< 0.330	mg/Kg

Attn: Mr. Kevin Axe

Date: Tuesday July 25th, 2000

RE: B17 7-8 Dup Project # 10512-004-004-9999 Lab ID: 9A07G129-019 Sample Date: 07/13/00 Date Received: 07/14/00

Inorganic Data Report

Parameters	Result	Units	Reporting Limit
рН	7.7	pH@20.2	+-0.20

Attn: Mr. Kevin Axe

Date: Friday July 28th, 2000

RE: B17 7-8 Dup Project # 10512-004-004-9999 Lab ID: 9A07G129-019 Sample Date: 07/13/00 Date Received: 07/14/00

Metals Data Report

Parameters	Result	Units	Reporting Limit
% Solids	76.1	%	0.10
Silver, Total	0.57	u mg/kg	0.57
Aluminum, Total	9640	mg/kg	22.9
Arsenic, Total	6.0	mg/kg	1.1
Barium, Total	56.0	mg/kg	1.1
Beryllium, Total	0,62	mg/kg	0.46
Calcium, Total	43000	mg/kg	11.4
Cadmium, Total	0.89	mg/kg	0.23
Cobalt, Total	9.9	mg/kg	0.57
Chromium, Total	16.7	mg/kg	1.1
Copper, Total	29.6	mg/kg	1.1
Iron, Total	19300	mg/kg	5.7
Mercury, Total	0.06	mg/kg	0.04
Potassium, Total	2580	mg/kg	57.1
Magnesium, Total	23800	mg/kg	11.4
Manganese, Total	380	mg/kg	0.57
Sodium, Total	255	mg/kg	114

Attn: Mr. Kevin Axe

Date: Friday July 28th, 2000

RE: **B17 7-8 Dup**Project # 10512-004-004-9999
Lab ID: **9A07G129-019**Sample Date: 07/13/00
Date Received: 07/14/00

Metals Data Report

Parameters	Result	Units	Reporting Limit
Nickel, Total	26.8	mg/kg	1.1
Lead, Total	127	mg/kg	0.57
Antimony, Total	2.3 u	mg/kg	2.3
Selenium, Total	0.57 u	mg/kg	0.57
Thallium, Total	1.1 u	mg/kg	1.1
Vanadium, Total	21.3	mg/kg	0.57
Zinc, Total	397	mg/kg	1.1

Attn: Mr. Kevin Axe

Date: Friday July 28th, 2000

RE: **B17 7-8 Dup** Project # 10512-004-004-9999

Lab ID: **9A07G129-020** Sample Date: 07/13/00 Date Received: 07/14/00

SPLP Leachate Analysis Report

Parameters	Result	Units	Reporting Limit
Chromium, SPLP	0.050 u	mg/L	0.050
Lead, SPLP	0.0094	mg/L	0.0075

Attn: Mr. Kevin Axe

Date: Tuesday July 25th, 2000

RE: **B19 2-4**

Project # 10512-004-004-9999 Lab ID: **9A07G129-030** Sample Date: 07/14/00 Date Received: 07/14/00

Inorganic Data Report

Parameters	Result	Units	Reporting Limit
рН	8.0	pH@20.7	+-0.20

Attn: Mr. Kevin Axe

Date: Friday July 28th, 2000

RE: **B19 2-4**Project # 10512-004-004-9999
Lab ID: **9A07G129-030**Sample Date: 07/14/00
Date Received: 07/14/00

Metals Data Report

Result		Units	Reporting Limit
79.0		%	0.10
0.49	u	mg/kg	0.49
10200		mg/kg	19.5
6.3		mg/kg	0.97
54.5		mg/kg	0.97
0.66		mg/kg	0.39
32000		mg/kg	9.7
0.85		mg/kg	0.19
10.4		mg/kg	0.49
17.3		mg/kg	0.97
25.0		mg/kg	0.97
23700		mg/kg	4.9
0.09		mg/kg	0.04
2590		mg/kg	48.7
19600		mg/kg	9.7
283		mg/kg	0.49
523		mg/kg	97.4
	79.0 0.49 10200 6.3 54.5 0.66 32000 0.85 10.4 17.3 25.0 23700 0.09 2590 19600 283	79.0 0.49 u 10200 6.3 54.5 0.66 32000 0.85 10.4 17.3 25.0 23700 0.09 2590 19600 283	79.0

Attn: Mr. Kevin Axe

Date: Friday July 28th, 2000

RE: **B19 2-4**Project # 10512-004-004-9999
Lab ID: **9A07G129-030**Sample Date: 07/14/00
Date Received: 07/14/00

Metals Data Report

Parameters	Result		Units	Reporting Limit
Nickel, Total	26.1		mg/kg	0.97
Lead, Total	22.6		mg/kg	0.49
Antimony, Total	1.9	U	mg/kg	1.9
Selenium, Total	0.57		mg/kg	0.49
Thallium, Total	0.97	u	mg/kg	0.97
Vanadium, Total	24.3		mg/kg	0.49
Zinc, Total	252		mg/kg	0.97

Attn: Mr. Kevin Axe

Date: Friday July 28th, 2000

RE: **B19 2-4**

Project # 10512-004-004-9999 Lab ID: **9A07G129-031** Sample Date: 07/14/00 Date Received: 07/14/00

SPLP Leachate Analysis Report

Parameters	Result	Units	Reporting Limit
Chromium, SPLP	0.050 u	mg/L	0.050
Lead, SPLP	0.0075 u	mg/L	0.0075

Attn: Mr. Kevin Axe

Date: Friday July 21st, 2000

RE: **B19 8-10**Project # 10512-004-004-9999
Lab ID: **9A07G130-001**Sample Date: 07/14/00 Date Received: 07/14/00

Inorganic Data Report

Parameters	Result	Units	Reporting Limit
рН	7.7	pH@21.0	+-0.20

Attn: Mr. Kevin Axe

Date: Friday July 28th, 2000

RE: **B19 8-10**Project # 10512-004-004-9999
Lab ID: **9A07G130-001**Sample Date: 07/14/00
Date Received: 07/14/00

Metals Data Report

Parameters	Result		Units	Reporting Limit
% Solids	81.2		%	0.10
Silver, Total	0.57	u	mg/kg	0.57
Aluminum, Total	12600		mg/kg	22.8
Arsenic, Total	11.3		mg/kg	1.1
Barium, Total	55.9		mg/kg	1.1
Beryllium, Total	0.82		mg/kg	0.46
Calcium, Total	46400		mg/kg	11.4
Cadmium, Total	0.42		mg/kg	0.23
Cobalt, Total	14.6		mg/kg	0.57
Chromium, Total	21.8		mg/kg	1.1
Copper, Total	32.6		mg/kg	1.1
Iron, Total	30300		mg/kg	5.7
Mercury, Total	0.04	u	mg/kg	0.04
Potassium, Total	3920		mg/kg	57.0
Magnesium, Total	24500		mg/kg	11.4
Manganese, Total	365		mg/kg	0.57
Sodium, Total	226		mg/kg	114

Attn: Mr. Kevin Axe

Date: Friday July 28th, 2000

RE: B19 8-10 Project # 10512-004-004-9999 Lab ID: 9A07G130-001 Sample Date: 07/14/00 Date Received: 07/14/00

Metals Data Report

Parameters	Result	Units	Reporting Limit
Nickel, Total	40.2	mg/kg	1.1
Lead, Total	15.7	mg/kg	0.57
Antimony, Total	2.3 u	mg/kg	2.3
Selenium, Total	0.71	mg/kg	0.57
Thallium, Total	1.4	mg/kg	1.1
Vanadium, Total	26.2	mg/kg	0.57
Zinc, Total	55.2	mg/kg	1.1

Attn: Mr. Kevin Axe

Date: Friday July 28th, 2000

RE: B19 8-10 Project # 10512-004-004-9999 Lab ID: 9A07G130-002 Sample Date: 07/14/00 Date Received: 07/14/00

SPLP Leachate Analysis Report

Parameters	Result	Units	Reporting Limit
Chromium, SPLP	0.050 u	mg/L	0.050
Lead, SPLP	0.0075 u	mg/L	0.0075

Severn Trent Laboratories

2417 Bond Street University Park, IL 60466

Tel: (708) 534-5200 Fax: (708) 534-5211 www.stl-inc.com

July 28, 2000

Mr. Rich Lounsbury Roy F. Weston, Inc. 750 East Bunker Ct., Suite 500 Vernon Hills, IL 60061-1450

RE: Peoples Gas Lot 9A07G129

Dear Mr. Lounsbury:

The enclosed analytical report is for the project and lot number listed above. If you have any questions, please contact me at 708-534-5200.

Sincerely,

Severn Trent Laboratories

Nana Madorald

Richard C. Wright

Project Manager

sį

Enclosures

Approved By:

The results presented in this report relate only to the analytical testing and conditions of sample at receipt. This report pertains to only those samples actually tested. All 112 pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

Other Laboratory Locations:

- · Mobile, AL
- Monroe, CT
- · Miramar, FL
- Pensacola, FL • Tallahassee, FL
- Tampa, FL
- Savannah, GA • Billerica, MA

- Westfield, MA
- Sparks, MD
- Edison, NJ
- Whippany, NJ
- Amherst, NY
- Newburgh, NY
- Houston, TX · Coichester, VT

Sales Office Locations:

- Cantonment, FL
- · Orlando, FL
- · South Pasadena, FL
- New Orleans, LA
- Waterford, MI
- · Blairstown, NJ • Mt. Laurel, NJ
- · Morristown, NJ · Schenectady, NY

a part of

Severn Trent Services Inc

LABORATORY CHRONICLE

LOT # :9A07G129

				201 .5/10/4125			
CLIENT ID /ANALYSIS	Sample #	MTX	PREP #	COLLECTN	DATE REC	EXT/PREP	ANALYSIS
B9 4-5		-					
PH PH SPLP	001 001 REP 001	S S S	80GPH177 80GPH177	07/12/00 07/12/00 07/12/00	07/14/00 07/14/00 07/14/00	07/18/00 07/18/00	07/18/00 07/18/00 07/18/00
B11 4-5							
PH SPLP	003 003	S S	80GPH177	07/12/00 07/12/00	07/14/00 07/14/00	07/18/00	07/18/00 07/18/00
B12 8-10							
PH SPLP	005 005	S S	80GPH177	07/12/00 07/12/00	07/14/00 07/14/00	07/18/00	07/18/00 07/18/00
B12 15-16							
PH SPLP	007 007	S S	80GPH177	07/12/00 07/12/00	07/14/00 07/14/00	07/18/00	07/18/00 07/18/00
B13 3.5-4.5							
PH SPLP	009 009	S S	80GPH177	07/12/00 07/12/00	07/14/00 07/14/00	07/18/00	07/18/00 07/18/00
B13 13-14							
PH SPLP	011 011	S S	80GPH177	07/12/00 07/12/00	07/14/00 07/14/00	07/18/00	07/18/00 07/18/00
B15 7-8							
PH SPLP	013 013	S S	80GPH177	07/13/00 07/13/00	07/14/00 07/14/00	07/18/00	07/18/00 07/18/00
B15 11-12							
PH	015	S	80GPH177	07/13/00	07/14/00	07/18/00	07/18/00

According to 40CFR Part 136.3, pH, Sulfite, Chlorine Residual and Dissolved Oxygen analysis must be performed immediately after aqueous sample collection. When these parameters are not indicated above in the "CLIENT ID/ANALYSIS" column as "FIELD" (e.g., "PH, FIELD") they were not analyzed immediately, but as soon as possible on day of receipt.

LABORATORY CHRONICLE

LOT # :9A07G129

CLIENT ID /ANALYSIS	Sample #	MTX	PREP #	COLLECTN	DATE REC	EXT/PREP	ANALYSIS
SPLP	015	S	-	07/13/00	07/14/00		07/18/00
B17 7-8							
PH SPLP	017 017	S S	80GPH177		07/14/00 07/14/00	07/18/00	07/18/00 07/18/00
B17 7-8 Dup			~				
PH SPLP	019 019	S S	80GPH177	07/13/00 07/13/00	07/14/00 07/14/00	07/18/00	07/18/00 07/18/00
B8 2-4					%		
PH SPLP	021 021	S S	80GPH177	07/14/00 07/14/00	07/14/00 07/14/00	07/18/00	07/18/00 07/18/00
RB 1							
SPLP	023	W		07/14/00	07/14/00		07/18/00
B16 4-6							
TOC BY LLOYD KAHN	025	S	80GT0021	07/14/00	07/14/00	07/17/00	07/21/00
B16 8-10							
PH SPLP	026 026	S S	80GPH177	07/14/00 07/14/00	07/14/00 07/14/00	07/18/00	07/18/00 07/18/00
B16 10-12							
PH SPLP	028 028	S S	80GPH177	07/14/00 07/14/00	07/14/00 07/14/00	07/18/00	07/18/00 07/18/00
B19 2-4							
PH SPLP	030 030	S	80GPH177	07/14/00 07/14/00	07/14/00 07/14/00	07/18/00	07/18/00 07/18/00

According to 40CFR Part 136.3, pH, Sulfite, Chlorine Residual and Dissolved Oxygen analysis must be performed immediately after aqueous sample collection. When these parameters are not indicated above in the "CLIENT ID/ANALYSIS" column as "FIELD" (e.g., "PH, FIELD") they were not analyzed immediately, but as soon as possible on day of receipt.

LABORATORY CHRONICLE

LOT # :9A07G129

CLIENT ID /ANALYSIS Sample # MTX PREP # COLLECTN DATE REC EXT/PREP ANALYSIS

LAB QC:

SIGNATURE Drane L. Glange

DATE 7-25-00

Severn Trent Laboratories Chicago Wet Chemistry Case Narrative

Client:

RFW-Peoples Gas

RFW lot #:

9A07G129

Date Rec'd:

07/14/00

The pH analysis that was requested on the water sample could not be done, since there was no unpreserved sample available.

Diane L. Harper

Wet Chemistry Section Manager

<u>7-25-10</u> Date

Severn Trent Laboratories Chicago WET CHEMISTRY METHOD REFERENCE

The following methods are used as reference for the analysis of samples contained with Sample Lot: 9A07C/29

PARAMETER	PARAMETER EPA 600 METHO		SW-846	OTHER		
Acidity	305.1	2310B				
Alkalinity, Total, Carbonate,	310.1	2320B				
Bicarbonate						
Ammonia (Dist/Nesslers)	350.2	4500NH ₃ B+C				
Biochemical Oxygen Demand	405.1	5210B		ASTM D4007		
Bottom Sediment & Water				ASTM D4007		
BTU Bromide	300.0	4110B	9056			
Bromine	300.0 Detection		5050 Prep			
Chemical Oxygen Demand				_HACH 8000		
Chloride	325.2	4500C1E	9251			
	300.0	4110B	9056			
Chlorine (O₂Bomb)	300.0 Detection	4500015	5050 Prep	ISE Detection		
Chlorine, Residual	330.4	4500C1F 3500CrD	3060A Digest			
Chromium VI		730000	7196A			
Color	110.2	2120B				
Corrosivity, pH	150.1		9045C - Waste p	H in Water		
			9040B			
Corrosivity, Langlier		2330A+B				
Cyanide, Amenable	3351	4500CNG	9010B / 9014	Calculation		
Cyanide, Weak, Dissociable		4500CNI	7.3.3.2	Calculation		
Cyanide, Reactive Cyanide, Total	335.2	4500CNC, E	9010B / 9014	ILM03,0/4.0		
Density/Specific Gravity	333.2	4500CIVC, E		ASTM D1298		
Dennifi Dicense Crusses				ASTM D5057		
Flashpoint			1010	_ASTM D93		
		^*****		ASTM D92		
Ferrous Iron	340.2	3500 FeD 4500 FC				
Fluoride, Undistilled (Distilled – Data Comparability	340.2 300.0	4300 FC	9056			
Study Available)	500.0					
Fluorine	340.2 Detection		5050 Prep			
	300.0 Detection					
Hardness	130.2 (EDTA)	2340C (EDTA)				
		2340B (Calc)		TIPE SAT		
Heavy Metals			Soc 7	USP 231 ASTM D-4982A		
Ignitability MBAS (Surfactants)	425.1	5540 C	Sec. 7	AD 1191 D=4702A		
Nitrate/Nitrite	353.2	4500NO ₃ F				
Nitrate	353.2 -354.1	4500NO ₃ F-NO ₂				
	300.0	4110B	9056			
Nitrite	354.1	4500NO ₂ B				
	300.0	4110B	9056			
Odor	140.1	2150B				

Severn Trent Laboratories Chicago WET CHEMISTRY METHOD REFERENCE

The following methods are used as reference for the analysis of samples contained with Sample Lot: 9A076129

PARAMETER	STANDARD EPA 600 METHODS		SW-846	OTHER		
Oil & Grease	413.1	5520B	9070	1664		
Oil & Grease, Soxhlet	_	_	9071A(Hexane)			
Oxygen, Dissolved	360.1 Electrode 360.2 Winkler	4500OG 4500OC				
Paint Filters (Free Liquid)	300.2 WHATEI	4 300 0C	9095A			
Petroleum Hydrocarbons		5520F	9071A Extract.			
pH, Water	150.1	4500H [*] B	9040B			
pH, Soil			9045C - Waste/	Soil pH in Water		
• 1			9041A Paper			
Phenolics	420.2		9066			
Orthophosphate as P	365.2	4500PE	9056			
	300.0	4110B				
Phosphorus as P	365.2	4500PE				
		4500PE4e(Soil)				
Residue on Evaporation 180C	160.1 Modified	2540C Modified				
Solids, Settleable	160.5	2540F				
Solids, Total	160.3	2540B				
Solids, Total Dissolved	_160.1	2540C				
Solids, Total Suspended	160.2	2540D				
Solids, Total Volatile	160,4	2540E				
Solids, Dissolved Volatile	160.4	2540E				
Solids, Suspended Volatile	160.4	2540E				
Soluble Organic Carbon	415.1	5310C	9050A			
Specific Conductance	120.1	2510B 4500SO ₄ ² E	9030A 9038 Mod			
Sulfate	375.4 Mod.	4300SO ₄ E	9058 Mod., 9056			
G 1F1	300.0	4110B 4500S ² E	9030 9030A Mod			
Sulfide	376.1	43003 E	9030B / 9034			
Cultila Banatina			7,3,4,2			
Sulfide, Reactive Sulfur	375.4 Detection					
Summ	300.0 Detection		20201 1ch			
Total Kjeldahl Nitrogen	351.3	4500N _{ORG} C				
Total Inorganic Carbon	415.1	5310C				
Total Organic Carbon	415.1	5310C	9060 Quads	Lloyd Kahn		
Total Organic Caroon Total Organic Halogens	113.1	5320B	9020B	<u>Ville) G Tamin</u>		
Total Org Halogens on Waste	325.2 Detection	9020B Mod	5050prep	ISE Detection		
Total Olg Halogens on Waste	300.0 Detection	5020D Wild	5030 prep	15D Detection		
Turbidity	180.1	2130B				
Viscosity, Brookfield				ASTM D2196		
Viscosity, Kinematic				ASTM D445		
Comments:						
		<u> </u>				

Attn: Mr. Kevin Axe

Date: Tuesday July 25th, 2000

Project # 10512-004-004-9999 Lab Batch: **9A07G129**

Inorganic Method Blank Data Report

Sample	Lab ID	Parameter	Result	Units	Reporting Limit
Blank 1	80GT0021-MB1	TOC BY LLOYD KHAN	250 u	mg/kg	250

Attn: Mr. Kevin Axe

Date: Tuesday July 25th, 2000

Project # 10512-004-004-9999 Lab Batch: **9A07G129**

Inorganic Precision Data Report

Sample Site ID	Parameter	Initial Result	Replicate	RPD
-001REP B9 4-5	рН	7.5	7.6	0.0

Attn: Mr. Kevin Axe

Date: Tuesday July 25th, 2000

Project # 10512-004-004-9999 Lab Batch: **9A07G129**

Inorganic Laboratory Control Standards Report

Lab ID	o ID Parameter		Units	Spike #1 % Recov.	Spike #2 % Recov	RPD
80GT0021-LCS	TOC LLOYD KHAN	4780	mg/kg	90.9	99.2	8.7

LABORATORY CHRONICLE

CLIENT ID /ANALYSIS	Sample #	MTX	PREP #	COLLECTN	DATE REC	EXT/PREP	ANALYSIS
B9 4-5			-		-		
% SOLIDS SILVER, TOTAL ALUMINUM, TOTAL ARSENIC, TOTAL BARIUM, TOTAL BERYLLIUM, TOTAL CALCIUM, TOTAL CADMIUM, TOTAL COBALT, TOTAL COPPER, TOTAL IRON, TOTAL MERCURY, TOTAL MAGNESIUM, TOTAL MAGNESIUM, TOTAL MAGNESIUM, TOTAL MICKEL, TOTAL NICKEL, TOTAL LEAD, TOTAL ANTIMONY, TOTAL SELENIUM, TOTAL THALLIUM, TOTAL THALLIUM, TOTAL VANADIUM, TOTAL ZINC, TOTAL CHROMIUM, SPLP LEACH LEAD, SPLP LEACH	001 001 001 001 001 001 001 001 001 001	M M M M M M M M M M M M M M M M M M M	9AGI0767 9AGI0767	07/12/00 07/12/00	07/14/00 07/14/00	07/19/00 07/17/00 07/19/00 07/19/00 07/19/00 07/19/00 07/19/00 07/19/00 07/19/00	07/20/00 07/20/00
B11 4-5							
% SOLIDS SILVER, TOTAL ALUMINUM, TOTAL ARSENIC, TOTAL BARIUM, TOTAL BERYLLIUM, TOTAL CALCIUM, TOTAL CADMIUM, TOTAL	003 003 003 003 003 003 003	55555555	9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767	07/12/00 07/12/00 07/12/00 07/12/00 07/12/00 07/12/00	07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00	07/19/00	07/20/00 07/20/00 07/20/00 07/20/00 07/20/00 07/20/00

LABORATORY CHRONICLE

CLIENT ID /ANALYSIS	Sample #	MTX	PREP #	COLLECTN	DATE REC	EXT/PREP	ANALYSIS
COBALT, TOTAL CHROMIUM, TOTAL COPPER, TOTAL IRON, TOTAL MERCURY, TOTAL POTASSIUM, TOTAL MAGNESIUM, TOTAL MANGANESE, TOTAL SODIUM, TOTAL NICKEL, TOTAL LEAD, TOTAL ANTIMONY, TOTAL SELENIUM, TOTAL THALLIUM, TOTAL VANADIUM, TOTAL ZINC, TOTAL CHROMIUM, SPLP LEACH LEAD, SPLP LEACH	003 003 003 003 003 003 003 003 003 003	RRUNDUNUNUNUNUNUNUN	9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767	07/12/00 07/12/00 07/12/00 07/12/00 07/12/00 07/12/00 07/12/00 07/12/00 07/12/00 07/12/00 07/12/00 07/12/00 07/12/00 07/12/00 07/12/00 07/12/00	07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00	07/19/00 07/19/00 07/19/00 07/19/00 07/19/00 07/19/00 07/19/00 07/19/00 07/19/00 07/19/00 07/19/00 07/19/00 07/19/00 07/19/00 07/19/00 07/19/00 07/19/00 07/19/00	07/20/00 07/20/00 07/20/00 07/17/00 07/20/00 07/20/00 07/20/00 07/20/00 07/20/00 07/20/00 07/22/00 07/20/00 07/20/00 07/20/00 07/20/00
B12 8-10							
% SOLIDS SILVER, TOTAL ALUMINUM, TOTAL ARSENIC, TOTAL BARIUM, TOTAL BERYLLIUM, TOTAL CALCIUM, TOTAL CADMIUM, TOTAL COBALT, TOTAL CHROMIUM, TOTAL COPPER, TOTAL IRON, TOTAL MERCURY, TOTAL MAGNESIUM, TOTAL MAGNESIUM, TOTAL MANGANESE, TOTAL SODIUM, TOTAL NICKEL, TOTAL LEAD, TOTAL	005 005 005 005 005 005 005 005 005 005		9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767	07/12/00 07/12/00 07/12/00 07/12/00 07/12/00 07/12/00 07/12/00 07/12/00 07/12/00 07/12/00 07/12/00 07/12/00 07/12/00 07/12/00 07/12/00 07/12/00 07/12/00 07/12/00	07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00	07/19/00 07/19/00 07/19/00 07/19/00 07/19/00 07/19/00 07/19/00	07/20/00 07/20/00 07/20/00 07/20/00 07/20/00 07/20/00 07/20/00 07/20/00 07/20/00 07/20/00 07/20/00 07/20/00 07/20/00 07/20/00 07/20/00 07/20/00 07/20/00

LABORATORY CHRONICLE

CLIENT ID /ANALYSIS	Sample #	MTX	PREP #	COLLECTN	DATE REC	EXT/PREP	ANALYSIS
ANTIMONY, TOTAL SELENIUM, TOTAL THALLIUM, TOTAL VANADIUM, TOTAL ZINC, TOTAL CHROMIUM, SPLP LEACH LEAD, SPLP LEACHATE	005 005 005 005 005 006 006	S S S S W W	9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGE0118	07/12/00 07/12/00 07/12/00 07/12/00 07/12/00	07/14/00 07/14/00 07/14/00 07/14/00 07/14/00	07/19/00 07/19/00 07/19/00 07/19/00 07/19/00 07/19/00 07/19/00	07/22/00 07/22/00 07/20/00 07/20/00 07/20/00
B12 15-16							
% SOLIDS SILVER, TOTAL ALUMINUM, TOTAL ARSENIC, TOTAL BARIUM, TOTAL BERYLLIUM, TOTAL CALCIUM, TOTAL CADMIUM, TOTAL COBALT, TOTAL COPPER, TOTAL IRON, TOTAL MERCURY, TOTAL MAGNESIUM, TOTAL MANGANESE, TOTAL SODIUM, TOTAL NICKEL, TOTAL LEAD, TOTAL ANTIMONY, TOTAL SELENIUM, TOTAL THALLIUM, TOTAL VANADIUM, TOTAL VANADIUM, TOTAL ZINC, TOTAL CHROMIUM, SPLP LEACH LEAD, SPLP LEACH	007 007 007 007 007 007 007 007 007 007		9AGI0767 9AGI0767	07/12/00 07/12/00	07/14/00 07/14/00		07/20/00 07/20/00
B13 3.5-4.5							
% SOLIDS	009	S	9AGTS556	07/12/00	07/14/00	07/18/00	07/18/00

LABORATORY CHRONICLE

CLIENT ID /ANALYSIS	Sample #	MTX	PREP #	COLLECTN	DATE REC	EXT/PREP	ANALYSIS
SILVER, TOTAL ALUMINUM, TOTAL ARSENIC, TOTAL BARIUM, TOTAL BERYLLIUM, TOTAL CALCIUM, TOTAL CADMIUM, TOTAL COBALT, TOTAL CHROMIUM, TOTAL COPPER, TOTAL IRON, TOTAL MERCURY, TOTAL MAGNESIUM, TOTAL MAGNESIUM, TOTAL MANGANESE, TOTAL SODIUM, TOTAL NICKEL, TOTAL NICKEL, TOTAL LEAD, TOTAL ANTIMONY, TOTAL THALLIUM, TOTAL THALLIUM, TOTAL VANADIUM, TOTAL ZINC, TOTAL CHROMIUM, SPLP LEACH LEAD, SPLP LEACH	009 009 009 009 009 009		9AGI0767 9AGI0767	07/12/00 07/12/00	07/14/00 07/14/00	07/19/00 07/19/00	07/20/00 07/20/00 07/20/00 07/20/00 07/20/00 07/20/00 07/20/00 07/20/00 07/20/00 07/20/00 07/20/00 07/20/00 07/20/00 07/20/00 07/20/00 07/20/00 07/20/00 07/22/00 07/22/00 07/22/00 07/22/00 07/22/00 07/22/00 07/20/00
B13 13-14							
SILVER, TOTAL ALUMINUM, TOTAL ARSENIC, TOTAL BARIUM, TOTAL	011 011 011 011 011 011 011 011 011 011		9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767	07/12/00 07/12/00 07/12/00 07/12/00 07/12/00 07/12/00 07/12/00 07/12/00 07/12/00 07/12/00	07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00	07/19/00	07/20/00 07/20/00 07/20/00 07/20/00 07/20/00 07/20/00 07/20/00 07/20/00 07/20/00

LABORATORY CHRONICLE

CLIENT ID /ANALYSIS	Sample #	MTX	PREP #	COLLECTN	DATE REC	EXT/PREP	ANALYSIS
	011 011 011 011 011 011 011 011 011	SSSSSSSSSSSW W	9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767	07/12/00 07/12/00 07/12/00 07/12/00 07/12/00 07/12/00 07/12/00 07/12/00 07/12/00 07/12/00 07/12/00	07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00	07/17/00 07/19/00 07/19/00 07/19/00 07/19/00 07/19/00 07/19/00 07/19/00 07/19/00 07/19/00 07/19/00 07/19/00 07/19/00	07/20/00 07/20/00 07/20/00 07/22/00 07/20/00 07/20/00 07/22/00 07/22/00 07/20/00 07/20/00 07/20/00
B15 7-8							
SILVER, TOTAL ALUMINUM, TOTAL ARSENIC, TOTAL BARIUM, TOTAL BERYLLIUM, TOTAL CALCIUM, TOTAL CADMIUM, TOTAL COBALT, TOTAL CHROMIUM, TOTAL	013 013 013 013 013 013 013 013 013		9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767	07/13/00 07/13/00	07/14/00 07/14/00	07/18/00 07/19/00	07/20/00 07/20/00

LABORATORY CHRONICLE

CLIENT ID /ANALYSIS	Sample #	MTX	PREP #	COLLECTN	DATE REC	EXT/PREP	ANALYSIS
ZINC, TOTAL CHROMIUM, SPLP LEACH LEAD, SPLP LEACHATE	013 014 014	S W W	9AGE0118	07/13/00	07/14/00	07/19/00 07/19/00 07/19/00	07/20/00
B15 11-12							
SILVER, TOTAL ALUMINUM, TOTAL ARSENIC, TOTAL BARIUM, TOTAL BERYLLIUM, TOTAL CALCIUM, TOTAL CADMIUM, TOTAL COBALT, TOTAL CHROMIUM TOTAL	015 015 015 015 015 015 015 015 015 015	M	9AGI0767 9AGI0767	07/13/00 07/13/00	07/14/00 07/14/00	07/18/00 07/19/00	07/20/00 07/20/00
B17 7-8							
% SOLIDS SILVER, TOTAL ALUMINUM, TOTAL ARSENIC, TOTAL BARIUM, TOTAL	017 017 017 017 017	S S	9AGTS556 9AGI0767 9AGI0767 9AGI0767 9AGI0767	07/13/00 07/13/00 07/13/00	07/14/00 07/14/00 07/14/00	07/19/00 07/19/00	07/20/00 07/20/00 07/20/00

LABORATORY CHRONICLE

CLIENT ID /ANALYSIS	Sample #	MTX	PREP #	COLLECTN	DATE REC	EXT/PREP	ANALYSIS
BERYLLIUM, TOTAL CALCIUM, TOTAL CADMIUM, TOTAL COBALT, TOTAL CHROMIUM, TOTAL CHROMIUM, TOTAL COPPER, TOTAL IRON, TOTAL MERCURY, TOTAL MAGNESIUM, TOTAL MAGNESIUM, TOTAL MANGANESE, TOTAL SODIUM, TOTAL NICKEL, TOTAL LEAD, TOTAL ANTIMONY, TOTAL SELENIUM, TOTAL THALLIUM, TOTAL THALLIUM, TOTAL ZINC, TOTAL CHROMIUM, SPLP LEACH LEAD, SPLP LEACH	017 017 017 017 017 017 017 017 017 017		9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767	07/13/00 07/13/00 07/13/00 07/13/00 07/13/00 07/13/00 07/13/00 07/13/00 07/13/00 07/13/00 07/13/00 07/13/00 07/13/00 07/13/00 07/13/00 07/13/00 07/13/00 07/13/00 07/13/00 07/13/00	07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00	07/19/00 07/19/00	07/20/00 07/20/00 07/20/00 07/20/00 07/20/00 07/20/00 07/20/00 07/20/00 07/20/00 07/20/00 07/20/00 07/20/00 07/22/00 07/22/00 07/22/00 07/20/00 07/20/00 07/20/00 07/20/00
B17 7-8 Dup							
% SOLIDS SILVER, TOTAL ALUMINUM, TOTAL ARSENIC, TOTAL BARIUM, TOTAL BERYLLIUM, TOTAL CALCIUM, TOTAL CADMIUM, TOTAL COBALT, TOTAL CHROMIUM, TOTAL COPPER, TOTAL IRON, TOTAL MERCURY, TOTAL MAGNESIUM, TOTAL MAGNESIUM, TOTAL MANGANESE, TOTAL	019 019 019 019 019 019 019 019 019 019		9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767	07/13/00 07/13/00 07/13/00 07/13/00 07/13/00 07/13/00 07/13/00 07/13/00 07/13/00 07/13/00 07/13/00 07/13/00 07/13/00 07/13/00	07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00	07/18/00 07/19/00 07/19/00 07/19/00 07/19/00 07/19/00 07/19/00 07/19/00 07/19/00 07/19/00 07/19/00 07/19/00 07/19/00 07/19/00 07/19/00	07/20/00 07/20/00 07/20/00 07/20/00 07/20/00 07/20/00 07/20/00 07/20/00 07/20/00 07/20/00 07/20/00 07/20/00 07/20/00

LABORATORY CHRONICLE

CLIENT ID /ANALYSIS	Sample #	MTX	PREP #	COLLECTN	DATE REC	EXT/PREP	ANALYSIS
SODIUM, TOTAL NICKEL, TOTAL LEAD, TOTAL ANTIMONY, TOTAL SELENIUM, TOTAL THALLIUM, TOTAL VANADIUM, TOTAL ZINC, TOTAL CHROMIUM, SPLP LEACH LEAD, SPLP LEACHATE	019 019 019 019 019 019 019 019 020 020	SSSSSSWW	9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGE0118	07/13/00 07/13/00 07/13/00 07/13/00 07/13/00 07/13/00 07/13/00	07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00	07/19/00 07/19/00 07/19/00 07/19/00 07/19/00 07/19/00 07/19/00 07/19/00 07/19/00	07/20/00 07/20/00 07/20/00 07/22/00 07/22/00 07/20/00 07/20/00
B8 2-4							
% SOLIDS SILVER, TOTAL ALUMINUM, TOTAL ARSENIC, TOTAL BARIUM, TOTAL BERYLLIUM, TOTAL CALCIUM, TOTAL CADMIUM, TOTAL COBALT, TOTAL CHROMIUM, TOTAL COPPER, TOTAL IRON, TOTAL MERCURY, TOTAL MAGNESIUM, TOTAL MANGANESE, TOTAL SODIUM, TOTAL NICKEL, TOTAL LEAD, TOTAL ANTIMONY, TOTAL SELENIUM, TOTAL THALLIUM, TOTAL THALLIUM, TOTAL VANADIUM, TOTAL ZINC, TOTAL CHROMIUM, SPLP LEACH LEAD, SPLP LEACH	021 021 021 021 021 021 021 021 021 021	M M V V V V V V V V V V V V V V V V V V	9AGI0767 9AGI0767	07/14/00 07/14/00	07/14/00 07/14/00	07/18/00 07/19/00	07/20/00 07/20/00

LABORATORY CHRONICLE

CLIENT ID /ANALYSIS	Sample #	MTX	PREP #	COLLECTN	DATE REC	EXT/PREP	ANALYSIS
RB 1		-	-				
SILVER, SERIAL DILUT SILVER, TOTAL SILVER, TOTAL SILVER, TOTAL SILVER, TOTAL ALUMINUM, SERIAL DIL ALUMINUM, TOTAL ALUMINUM, TOTAL ALUMINUM, TOTAL ALUMINUM, TOTAL ARSENIC, SERIAL DILU ARSENIC, TOTAL ARSENIC, TOTAL ARSENIC, TOTAL ARSENIC, TOTAL ARSENIC, TOTAL BARIUM, TOTAL BARIUM, TOTAL BARIUM, TOTAL BARIUM, TOTAL BERYLLIUM, TOTAL BERYLLIUM, TOTAL BERYLLIUM, TOTAL BERYLLIUM, TOTAL BERYLLIUM, TOTAL CALCIUM, TOTAL CALCIUM, TOTAL CALCIUM, TOTAL CALCIUM, TOTAL CALCIUM, TOTAL CALCIUM, TOTAL CALCIUM, TOTAL CALCIUM, TOTAL CALCIUM, TOTAL CADMIUM , TOTAL CADMIUM , TOTAL CADMIUM , TOTAL CADMIUM , TOTAL CADMIUM , TOTAL CADMIUM , TOTAL CADMIUM , TOTAL CADMIUM , TOTAL CADMIUM , TOTAL CADMIUM , TOTAL CADMIUM , TOTAL C	023 L 023 REP 023 MS 023 MSD 023 L 023 MSD 023 L 023 MSD 023 L 023 MSD 023 L 023 REP 023 MS 023 REP	KEKEKEKEKEKEKEKEKEKEKEKEKEKEKEKEKE	9AGI0791 9AGI0791	07/14/00 07/14/00	07/14/00 07/14/00	07/24/00 07/24/00	07/25/00 07/25/00

LABORATORY CHRONICLE

CLIENT ID /ANALYSIS	Sample #	MTX	PREP #	COLLECTN	DATE REC	EXT/PREP	ANALYSIS
COBALT, TOTAL COBALT, TOTAL COBALT, TOTAL CHROMIUM, SERIAL DIL CHROMIUM, TOTAL CHROMIUM, TOTAL CHROMIUM, TOTAL CHROMIUM, TOTAL CHROMIUM, TOTAL COPPER, SERIAL DILUT COPPER, TOTAL COPPER, TOTAL COPPER, TOTAL IRON, SERIAL DILUTIO IRON, TOTAL IRON, TOTAL IRON, TOTAL IRON, TOTAL IRON, TOTAL OPPERSIUM, TOTAL OPPERSIU	023 REP 023 MS 023 MSD 023 L 023 MSD 023 MSD 023 MSD 023 L 023 MSD 023 REP 023 MS 023 REP 023 MS 023 REP 023 MS 023 REP 023 MS 023 REP 023 MS 023 REP 023 MS 023 REP 023 MS 023 REP 023 MS 023 REP 023 MS 023 REP 023 MS 023 REP 023 MS 023 REP 023 MS 023 REP 023 MS 023 REP 023 MS 023 REP 023 MS 023 REP 023 MS 023 REP 023 MS 023 REP 023 MS	K K K K K K K K K K K K K K K K K K K	9AGI0791 9AGI0791	07/14/00 07/14/00	07/14/00 07/14/00	07/24/00 07/24/00	07/25/00 07/25/00
MANGANESE, TOTAL MANGANESE, TOTAL MANGANESE, TOTAL	023 023 REP 023 MS	W W W	9AGI0791	07/14/00	07/14/00 07/14/00 07/14/00	07/24/00	07/25/00 07/25/00 07/25/00
MANGANESE, TOTAL SODIUM, SERIAL DILUT	023 MSD 023 L	W W	9AGI0791 9AGI0791	07/14/00 07/14/00	07/14/00 07/14/00	07/24/00 07/24/00 07/24/00	07/25/00 07/25/00
SODIUM, TOTAL SODIUM, TOTAL SODIUM, TOTAL SODIUM, TOTAL NICKEL, SERIAL DILUT	023 023 REP 023 MS 023 MSD 023 L	W W W	9AGI0791 9AGI0791 9AGI0791	07/14/00 07/14/00 07/14/00	07/14/00 07/14/00 07/14/00	07/24/00 07/24/00 07/24/00 07/24/00 07/24/00	07/25/00 07/25/00 07/25/00

LABORATORY CHRONICLE

CLIENT ID /ANALYSIS	Sample #	MTX	PREP #	COLLECTN	DATE REC	EXT/PREP	ANALYSIS
NICKEL, TOTAL NICKEL, TOTAL NICKEL, TOTAL NICKEL, TOTAL LEAD, SERIAL DILUTIO LEAD, TOTAL LEAD, TOTAL LEAD, TOTAL LEAD, TOTAL LEAD, TOTAL ANTIMONY, SERIAL DIL ANTIMONY, TOTAL ANTIMONY, TOTAL ANTIMONY, TOTAL ANTIMONY, TOTAL SELENIUM, TOTAL SELENIUM, TOTAL SELENIUM, TOTAL SELENIUM, TOTAL THALLIUM, TOTAL	023 REP 023 MS 023 REP 023 MS 023 L 023 REP 023 MS 023 REP	NE SE SE SE SE SE SE SE SE SE SE SE SE SE	9AGI0791 9AGI0791	07/14/00 07/14/00	07/14/00 07/14/00	07/24/00 07/24/00	07/25/00 07/25/00
B16 8-10 % SOLIDS	026	S	9AGTS556	07/14/00	07/14/00	07/18/00	07/18/00

LABORATORY CHRONICLE

CLIENT ID /ANALYSIS	Sample #	MTX	PREP #	COLLECTN	DATE REC	EXT/PREP	ANALYSIS
% SOLIDS	026 REP	 S	9AGT\$556	07/14/00	07/14/00	07/18/00	07/18/00
SILVER, SERIAL DILUT	026 L	S	9AGI0767	07/14/00	07/14/00	07/19/00	07/20/00
SILVER, TOTAL	026	S	9AGI0767	07/14/00	07/14/00	07/19/00	
SILVER, TOTAL	026 REP	S	9AGI0767	07/14/00	07/14/00	07/19/00	07/20/00
SILVER, TOTAL	026 MS	Ş	9AGI076/	0//14/00	07/14/00	07/19/00	
SILVER, TOTAL	026 MSD	Ş	9AGI076/	0//14/00	07/14/00	07/19/00	07/20/00
ALUMINUM, SERIAL DIL	026 L	S	9AG10/6/	0//14/00	07/14/00	07/19/00	07/20/00
ALUMINUM, TOTAL	026	Ş	9AG10/6/	0//14/00	07/14/00	07/19/00	07/20/00 07/20/00
ALUMINUM, TOTAL	026 REP	2	9AG10/6/	0//14/00	07/14/00	07/19/00 07/19/00	07/20/00
ALUMINUM, TOTAL	026 MS	5	9AG10767	07/14/00	07/14/00		07/20/00
ALUMINUM, TOTAL	026 MSD	2	9AG10/6/	07/14/00	07/14/00		07/20/00
ARSENIC, SERIAL DILU	026 L	5	9AG10/6/	07/14/00	07/14/00 07/14/00		07/20/00
AKSENIC, IDIAL	026	2	9AG10/6/	07/14/00	07/14/00		07/20/00
ARSENIC, TOTAL	026 REP	2	9AG10767	07/14/00	07/14/00	07/19/00	07/20/00
ARSENIC, TOTAL	026 MS	<u>ک</u> د	9AG10767	07/14/00	07/14/00	07/19/00	07/20/00
ARSENIC, TOTAL	026 MSD 026 L	S	9AG10767	07/14/00	07/14/00	07/19/00	07/20/00
BARIUM, SERIAL DILUT	026 L	ے د	9AG10767	07/14/00	07/14/00	07/19/00	07/20/00
BARIUM, TOTAL	026 REP	2	9AG10767	07/14/00	07/14/00	07/19/00	
BARIUM, TOTAL	026 MS	2	9AGI0767	07/14/00	07/14/00	07/19/00	07/20/00
BARIUM, TOTAL	026 MSD	2	9AGI0767	07/14/00	07/14/00	07/19/00	07/20/00
BARIUM, TOTAL BERYLLIUM, SERIAL DI	026 L	ζ	9AGT0767	07/14/00	07/14/00	07/19/00	07/20/00
BERYLLIUM, TOTAL	026	ζ	9AGT0767	07/14/00	07/14/00	07/19/00	07/20/00
BERYLLIUM, TOTAL	026 REP	Š			07/14/00		
BERYLLIUM, TOTAL	026 MS	Š	9AGT0767	07/14/00	07/14/00	07/19/00	07/20/00
BERYLLIUM, TOTAL	026 MSD	Š	9AGI0767	07/14/00	07/14/00	07/19/00	07/20/00
CALCIUM, SERIAL DILU	026 L	Š	9AGI0767	07/14/00	07/14/00	07/19/00	07/20/00
CALCIUM, TOTAL	026	S	9AGI0767	07/14/00	07/14/00	07/19/00	07/20/00
CALCIUM, TOTAL	026 REP	s	9AGI0767	07/14/00	07/14/00	07/19/00	07/20/00
CALCIUM, TOTAL	026 MS	S	9AGI0767	07/14/00	07/14/00	07/19/00	07/20/00
CALCIUM, TOTAL	026 MSD	S	9AGI0767	07/14/00	07/14/00	07/19/00	07/20/00
CADMIUM, SERIAL DILU	026 L	S	9AGI0767	07/14/00	07/14/00	07/19/00	07/20/00
CADMIUM, TOTAL	026	S	9AGI0767	07/14/00	07/14/00	07/19/00	0//20/00
CADMIUM, TOTAL	026 REP	-	9AGI0767	07/14/00	07/14/00	07/19/00	0//20/00
CADMIUM, TOTAL	026 MS	S	9AGI0767	07/14/00	07/14/00	0//19/00	0//20/00
CADMIUM, TOTAL	026 MSD	S	9AGI0767	07/14/00	07/14/00	0//19/00	0//20/00
COBALT, SERIAL DILUT	026 L	Š	9AGI0767	0//14/00	07/14/00	0//19/00	0//20/00
COBALT, TOTAL	026	S	9AG10/6/	0//14/00	07/14/00	0//19/00	0//20/00
COBALT, TOTAL	026 REP	S S S S	9AG10/67	0//14/00	07/14/00	0//19/00	07/20/00
COBALT, TOTAL	026 MS	S	9AG10767	0//14/00	07/14/00	0//19/00	0//20/00

LABORATORY CHRONICLE

CLIENT ID /ANALYSIS	Sample #	MTX	PREP #	COLLECTN	DATE REC	EXT/PREP	ANALYSIS
COBALT, TOTAL CHROMIUM, SERIAL DIL CHROMIUM, TOTAL CHROMIUM, TOTAL CHROMIUM, TOTAL CHROMIUM, TOTAL CHROMIUM, TOTAL		S S S S S S S S S S S S S S S S S S S	9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767	07/14/00 07/14/00 07/14/00 07/14/00 07/14/00	07/14/00 07/14/00 07/14/00 07/14/00 07/14/00	07/19/00 07/19/00 07/19/00 07/19/00 07/19/00 07/19/00	07/20/00 07/20/00 07/20/00 07/20/00 07/20/00
COPPER, SERIAL DILUT COPPER, TOTAL COPPER, TOTAL COPPER, TOTAL	026 026 REP 026 MS	\$ \$ \$	9AGI0767 9AGI0767 9AGI0767	07/14/00 07/14/00 07/14/00	07/14/00 07/14/00 07/14/00	07/19/00 07/19/00 07/19/00 07/19/00	07/20/00 07/20/00 07/20/00
COPPER, TOTAL IRON, SERIAL DILUTIO IRON, TOTAL IRON, TOTAL	026 L 026	$\mathcal{L}_{\mathcal{L}}}}}}}}}}$	9AGI0767 9AGI0767 9AGI0767	07/14/00 07/14/00 07/14/00	07/14/00 07/14/00 07/14/00	07/19/00 07/19/00 07/19/00 07/19/00	07/20/00 07/20/00 07/20/00
	U20 REP	S S S	9AGI0767 9AHG0180 9AHG0180	07/14/00 07/14/00 07/14/00	07/14/00 07/14/00 07/14/00	07/19/00 07/19/00 07/17/00 07/17/00	07/20/00 07/17/00 07/17/00
MERCURY, TOTAL POTASSIUM, SERIAL DI POTASSIUM, TOTAL POTASSIUM, TOTAL	026 MS 026 L 026 026 REP	\$ \$ \$	9AGI0767 9AGI0767 9AGI0767	07/14/00 07/14/00 07/14/00	07/14/00 07/14/00 07/14/00	07/17/00 07/19/00 07/19/00 07/19/00	07/20/00 07/20/00 07/20/00
POTASSIUM, TOTAL POTASSIUM, TOTAL MAGNESIUM, SERIAL DI MAGNESIUM, TOTAL	026 MS 026 MSD 026 L 026	S S S	9AGI0767 9AGI0767 9AGI0767	07/14/00 07/14/00 07/14/00	07/14/00 07/14/00 07/14/00	07/19/00 07/19/00 07/19/00 07/19/00	07/20/00 07/20/00 07/20/00
MAGNESIUM, TOTAL MAGNESIUM, TOTAL MAGNESIUM, TOTAL MANGANESE, SERIAL DI	026 REP 026 MS 026 MSD 026 L	\$ \$ \$	9AGI0767 9AGI0767 9AGI0767	07/14/00 07/14/00 07/14/00	07/14/00 07/14/00 07/14/00	07/19/00 07/19/00 07/19/00 07/19/00	07/20/00 07/20/00 07/20/00
MANGANESE, TOTAL MANGANESE, TOTAL	026 026 REP 026 MS 026 MSD		9AGI0767 9AGI0767 9AGI0767	07/14/00 07/14/00 07/14/00	07/14/00 07/14/00 07/14/00	07/19/00 07/19/00 07/19/00 07/19/00	07/20/00 07/20/00 07/20/00
SODIUM, SERIAL DILUT SODIUM, TOTAL SODIUM, TOTAL SODIUM, TOTAL	026 L 026 026 REP 026 MS	S S S	9AGI0767 9AGI0767 9AGI0767	07/14/00 07/14/00 07/14/00	07/14/00 07/14/00 07/14/00	07/19/00 07/19/00 07/19/00 07/19/00	07/22/00 07/22/00 07/22/00
SODIUM, TOTAL NICKEL, SERIAL DILUT	026 MSD 026 L	S S				07/19/00 07/19/00	

LABORATORY CHRONICLE

CLIENT ID /ANALYSIS	Sample #	MTX	PREP #	COLLECTN	DATE REC	EXT/PREP	ANALYSIS
NICKEL, TOTAL	026	_ <u> </u>				07/19/00	07/20/00
NICKEL, TOTAL	026 REP	S	9AGI0767	07/14/00	07/14/00	07/19/00	
NICKEL. TOTAL	026 MS				07/14/00		07/20/00
NICKEL, TOTAL	026 MSD	S			07/14/00		07/20/00
LEAD, SERIAL DILUTIO	026 L	S			07/14/00		07/20/00
LEAD, TOTAL	026	S			07/14/00		07/20/00
LEAD, TOTAL	026 REP	Ş			07/14/00		07/20/00
LEAD, TOTAL	026 MS	Ş			07/14/00		07/20/00
LEAD, TOTAL	026 MSD	Ş			07/14/00		07/20/00
ANTIMONY, SERIAL DIL	026 L	S				07/19/00	
ANTIMONY, TOTAL	026	Ş	9AG10/6/	0//14/00	0//14/00	07/19/00	07/20/00
ANTIMONY, TOTAL	026 REP	Š				07/19/00	
	026 MS	Ş				07/19/00	
ANTIMONY, TOTAL	026 MSD	5				07/19/00	
SELENIUM, SERIAL DIL	026 L	2				07/19/00	
SELENIUM, TOTAL	026	2	9AG10/6/	0//14/00	07/14/00	07/19/00	07/22/00
SELENIUM, TOTAL	026 REP	2				07/19/00	
SELENIUM, TOTAL	026 MS	2				07/19/00	
SELENIUM, TOTAL	026 MSD	2	9AG10767	07/14/00	07/14/00	07/19/00 07/19/00	07/22/00
THALLIUM, SERIAL DIL	026 L	2	9AG10767	07/14/00	07/14/00	07/19/00	07/22/00
THALLIUM, TOTAL	026 DED	S	9AG10767	07/14/00	07/14/00	07/19/00	07/22/00
THALLIUM, TOTAL	026 REP 026 MS	S				07/19/00	
THALLIUM, TOTAL	026 MSD	3				07/19/00	
THALLIUM, TOTAL VANADIUM, SERIAL DIL	026 L	2	9AG10707	07/14/00	07/14/00	07/19/00	07/20/00
VANADIUM, SERIAL DIL VANADIUM, TOTAL	026 L 026	2	9AG10707	07/14/00	07/14/00	07/19/00	07/20/00
VANADIUM, TOTAL	026 REP	Š				07/19/00	
VANADIUM, TOTAL	026 MS	Š				07/19/00	
VANADIUM, TOTAL	026 MSD	Š	9AGI0767	07/14/00	07/14/00	07/19/00	07/20/00
ZINC, SERIAL DILUTIO	026 L	Š	9AGI0767	07/14/00	07/14/00	07/19/00	07/20/00
ZINC, JERNAL BILOTIO	026	Š	9AGI0767	07/14/00	07/14/00	07/19/00	07/20/00
ZINC, TOTAL	026 REP	Š	9AGT0767	07/14/00	07/14/00	07/19/00	07/20/00
ZINC, TOTAL	026 MS	Š	9AGI0767	07/14/00	07/14/00	07/19/00	07/20/00
ZINC, TOTAL	026 MSD	Š				07/19/00	
CHROMIUM, SERIAL DIL	027 L	W	9AGE0118	07/14/00	07/14/00	07/19/00	07/20/00
CHROMIUM, SPLP LEACH	027	W				07/19/00	
CHROMIUM. SPLP LEACH	027 REP	W	9AGE0118	07/14/00	07/14/00	07/19/00	07/20/00
CHROMIUM, SPLP LEACH	027 MS	W				07/19/00	
LEAD, SERIAL DILUTIO	027 L	W				07/19/00	
LEAD, SPLP LEACHATE	027	W	9AGE0118	07/14/00	07/14/00	07/19/00	07/20/00

ļ	ARORATOR	Y CHRONICL	F
L	ADUIVA I UN	I CHILOHITCE	

דח ו	- #	. (aΔſ	17	G1	29
1 1/1	π	_	771	,,	\mathbf{L}	

CLIENT ID /ANALYSIS	Sample #	MTX	PREP #	COLLECTN	DATE REC	EXT/PREP	ANALYSIS
LEAD, SPLP LEACHATE LEAD, SPLP LEACHATE	027 REP 027 MS	W	9AGEŌ118 9AGEO118	07/14/00 07/14/00	07/14/00 07/14/00	07/19/00 07/19/00	07/20/00 07/20/00
B16 10-12							
SILVER, TOTAL ALUMINUM, TOTAL ARSENIC, TOTAL BARIUM, TOTAL BERYLLIUM, TOTAL CALCIUM, TOTAL CADMIUM, TOTAL COBALT, TOTAL CHROMIUM, TOTAL COPPER, TOTAL IRON, TOTAL MERCURY, TOTAL POTASSIUM, TOTAL MAGNESIUM, TOTAL MANGANESE, TOTAL SODIUM, TOTAL	028 028 028 028 028 028 028 028 028 028	SSSSSSSSSSSSSSSS	9AGI0767 9AGI0767	07/14/00 07/14/00	07/14/00 07/14/00	07/19/00 07/19/00	07/20/00 07/20/00
B19 2-4							
% SOLIDS SILVER, TOTAL ALUMINUM, TOTAL ARSENIC, TOTAL BARIUM, TOTAL BERYLLIUM, TOTAL	030 030 030 030 030 030	SSSSSS	9AGI0767 9AGI0767 9AGI0767	07/14/00 07/14/00 07/14/00 07/14/00	07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00	07/19/00 07/19/00 07/19/00 07/19/00	07/20/00 07/20/00 07/20/00 07/20/00

LABORATORY CHRONICLE

						LUI # :	9A0/G129	
	CLIENT ID /ANALYSIS	Sample #	MTX	PREP #	COLLECTN	DATE REC	EXT/PREP	ANALYSIS
<u> </u>	CALCIUM, TOTAL CADMIUM, TOTAL COBALT, TOTAL CHROMIUM, TOTAL COPPER, TOTAL IRON, TOTAL MERCURY, TOTAL POTASSIUM, TOTAL MAGNESIUM, TOTAL MAGNESIUM, TOTAL MANGANESE, TOTAL SODIUM, TOTAL NICKEL, TOTAL ANTIMONY, TOTAL ANTIMONY, TOTAL SELENIUM, TOTAL THALLIUM, TOTAL THALLIUM, TOTAL ZINC, TOTAL CHROMIUM, SPLP LEACH LEAD, SPLP LEACHATE AB QC:	030 030 030 030 030 030 030 030 030 030	SSSSSSSSSSSSSSSS	9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767 9AGI0767	07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00	07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00 07/14/00	07/19/00 07/19/00 07/19/00 07/19/00 07/19/00 07/19/00 07/19/00 07/19/00 07/19/00 07/19/00 07/19/00 07/19/00 07/19/00 07/19/00 07/19/00 07/19/00 07/19/00 07/19/00 07/19/00 07/19/00	07/20/00 07/20/00 07/20/00 07/20/00 07/20/00 07/20/00 07/20/00 07/20/00 07/20/00 07/20/00 07/20/00 07/22/00 07/22/00 07/22/00 07/20/00 07/20/00 07/20/00 07/20/00
	SILVER LABORATORY	LC1 BS	S	9AGI0767	N/A	N/A		07/20/00

•		_				07/10/00 07/00/00
SILVER LABORATORY	LC1 BS	S	9AGI0767	N/A	N/A	07/19/00 07/20/00
ALUMINUM LABORATORY	LC1 BS	S	9AGI0767	N/A	N/A	07/19/00 07/20/00
ARSENIC LABORATORY	LC1 BS	S	9AGI0767	N/A	N/A	07/19/00 07/20/00
BARTUM LABORATORY	LC1 BS	Š	9AGT0767	N/A	N/A	07/19/00 07/20/00
BERYLL TUM LABORATORY	LC1 BS	Š	9AGI0767	N/A	N/A	07/19/00 07/20/00
CAI CIUM LABORATORY	LC1 BS	Š	9AGI0767	N/A	N/A	07/19/00 07/20/00
CADMILIM LABORATORY	IC1 BS	ç	9AGI 0767	N/A	N/A	07/19/00 07/20/00
C, (B) (12 C) (2. 12 C) (1. 12 C)		ွ	D			0,, 20, 00 020.
COBALT LABORATORY	LC1 BS	S	9AGI0767	N/A	N/A	07/19/00 07/20/00
CHROMIUM LABORATORY	LC1 BS	S	9AGI0767	N/A	N/A	07/19/00 07/20/00
COPPER LABORATORY	LC1 BS	S	9AGI0767	N/A	N/A	07/19/00 07/20/00
TRON LABORATORY	LC1 BS	S	9AGI0767	N/A	N/A	07/19/00 07/20/00
POTASSIUM LABORATORY	LC1 BS	S	9AGI0767	N/A	N/A	07/19/00 07/20/00
MAGNESIUM LABORATORY	LC1 BS	S	9AGI0767	N/A	N/A	07/19/00 07/20/00
MANGANESÉ LABORATORY	LC1 BS	S	9AGI0767	N/A	N/A	07/19/00 07/20/00

LABORATORY CHRONICLE

CLIENT ID /ANALYSIS	Sample #	MTX	PREP #	COLLECTN	DATE REC	EXT/PREP	ANALYSIS
SODIUM LABORATORY NICKEL LABORATORY LEAD LABORATORY ANTIMONY LABORATORY SELENIUM LABORATORY THALLIUM LABORATORY VANADIUM LABORATORY ZINC LABORATORY SILVER, TOTAL ALUMINUM, TOTAL ARSENIC, TOTAL BARIUM, TOTAL CALCIUM, TOTAL CADMIUM, TOTAL COBALT, TOTAL COPPER, TOTAL IRON, TOTAL IRON, TOTAL MAGNESIUM, TOTAL MAGNESIUM, TOTAL SODIUM, TOTAL NICKEL, TOTAL NICKEL, TOTAL LEAD, TOTAL ANTIMONY, TOTAL THALLIUM, TOTAL THALLIUM, TOTAL VANADIUM, TOTAL VANADIUM, TOTAL THALLIUM, TOTAL VANADIUM, TOTAL VANADIUM, TOTAL VANADIUM, TOTAL VANADIUM, TOTAL CHROMIUM, TOTAL CHROMIUM LABORATORY MERCURY, TOTAL CHROMIUM LABORATORY	LC1 BS LC1 BS LC1 BS LC1 BS LC1 BS LC1 BS LC1 BS LC1 BS MB1 MB1 MB1 MB1 MB1 MB1 MB1 MB1 MB1 MB1		9AGI0767 9AGI0767	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	07/19/00 07/19/00	07/22/00 07/20/00 07/20/00 07/20/00 07/22/00 07/22/00 07/20/00
ARSENIC LABORATORY BARIUM LABORATORY	LC1 BS LC1 BS	W	9AGI0791 9AGI0791	N/A N/A	N/A N/A	07/24/00 07/24/00	

LABORATORY CHRONICLE

BERYLLIUM LABORATORY LC1 BS W 9AGI0791 N/A N/A 07/24/00 07/25/CALCIUM LABORATORY LC1 BS W 9AGI0791 N/A N/A 07/24/00 07/25/CADMIUM LABORATORY LC1 BS W 9AGI0791 N/A N/A 07/24/00 07/25/COBALT LABORATORY LC1 BS W 9AGI0791 N/A N/A 07/24/00 07/25/CHROMIUM LABORATORY LC1 BS W 9AGI0791 N/A N/A 07/24/00 07/25/COPPER LABORATORY LC1 BS W 9AGI0791 N/A N/A 07/24/00 07/25/IRON LABORATORY LC1 BS W 9AGI0791 N/A N/A 07/24/00 07/25/POTASSIUM LABORATORY LC1 BS W 9AGI0791 N/A N/A 07/24/00 07/25/POTASSIUM LABORATORY LC1 BS W 9AGI0791 N/A N/A 07/24/00 07/25/MAGNESIUM LABORATORY LC1 BS W 9AGI0791 N/A N/A 07/24/00 07/25/MANGANESE LABORATORY LC1 BS W 9AGI0791 N/A N/A 07/24/00 07/25/SODIUM LABORATORY LC1 BS W 9AGI0791 N/A N/A 07/24/00 07/25/NICKEL LABORATORY LC1 BS W 9AGI0791 N/A N/A 07/24/00 07/25/NICKEL LABORATORY LC1 BS W 9AGI0791 N/A N/A 07/24/00 07/25/LEAD L	CLIENT ID /ANALYSIS	Sample # MTX	PREP #	COLLECTN	DATE REC	EXT/PREP	ANALYSIS
ANTIMONY LABORATORY LC1 BS W 9AGI0791 N/A N/A 07/24/00 07/25/ SELENIUM LABORATORY LC1 BS W 9AGI0791 N/A N/A 07/24/00 07/25/ THALLIUM LABORATORY LC1 BS W 9AGI0791 N/A N/A 07/24/00 07/25/ VANADIUM LABORATORY LC1 BS W 9AGI0791 N/A N/A 07/24/00 07/25/ ZINC LABORATORY LC1 BS W 9AGI0791 N/A N/A 07/24/00 07/25/ SILVER, TOTAL MB1 W 9AGI0791 N/A N/A 07/24/00 07/25/ ALUMINUM, TOTAL MB1 W 9AGI0791 N/A N/A 07/24/00 07/25/ BARIUM, TOTAL MB1 W 9AGI0791 N/A N/A 07/24/00 07/25/ BARIUM, TOTAL MB1 W 9AGI0791 N/A N/A 07/24/00 07/25/ BERYLLIUM, TOTAL MB1 W 9AGI0791 N/A N/A 07/24/00 07/25/ CALCIUM, TOTAL MB1 W 9AGI0791 N/A N/A 07/24/00 07/25/ CALCIUM, TOTAL MB1 W 9AGI0791 N/A N/A 07/24/00 07/25/ CADMIUM, TOTAL MB1 W 9AGI0791 N/A N/A 07/24/00 07/25/ CADMIUM, TOTAL MB1 W 9AGI0791 N/A N/A 07/24/00 07/25/ COBALT, TOTAL MB1 W 9AGI0791 N/A N/A 07/24/00 07/25/ CHROMIUM, TOTAL MB1 W 9AGI0791 N/A N/A 07/24/00 07/25/ COPPER, TOTAL MB1 W 9AGI0791 N/A N/A 07/24/00 07/25/ RON, TOTAL MB1 W 9AGI0791 N/A N/A 07/24/00 07/25/ POTASSIUM, TOTAL MB1 W 9AGI0791 N/A N/A 07/24/00 07/25/ MAGNESIUM, TOTAL MB1 W 9AGI0791 N/A N/A 07/24/00 07/25/ MAGNESIUM, TOTAL MB1 W 9AGI0791 N/A N/A 07/24/00 07/25/ MAGNESIUM, TOTAL MB1 W 9AGI0791 N/A N/A 07/24/00 07/25/ MANGANESE, TOTAL MB1 W 9AGI0791 N/A N/A 07/24/00 07/25/ MANGANESE, TOTAL MB1 W 9AGI0791 N/A N/A 07/24/00 07/25/ MANGANESE, TOTAL MB1 W 9AGI0791 N/A N/A 07/24/00 07/25/ MANGANESE, TOTAL MB1 W 9AGI0791 N/A N/A 07/24/00 07/25/ MANGANESE, TOTAL MB1 W 9AGI0791 N/A N/A 07/24/00 07/25/ MANGANESE, TOTAL MB1 W 9AGI0791 N/A N/A 07/24/00 07/25/ MANGANESE, TOTAL MB1 W 9AGI0791 N/A N/A 07/24/00 07/25/ MANGANESE, TOTAL MB1 W 9AGI0791 N/A N/A 07/24/00 07/25/ MANGANESE, TOTAL MB1 W 9AGI0791 N/A N/A 07/24/00 07/25/ MANGANESE, TOTAL MB1 W 9AGI0791 N/A N/A 07/24/00 07/25/ MANGANESE, TOTAL MB1 W 9AGI0791 N/A N/A 07/24/00 07/25/ MANGANESE, TOTAL MB1 W 9AGI0791 N/A N/A 07/24/00 07/25/ MANGANESE, TOTAL MB1 W 9AGI0791 N/A N/A 07/24/00 07/25/ MANGANESE, TOTAL MB1 W 9AGI0791 N/A N/A 07/24/00 07/25/ MANGANESE, TOTAL MB1 W 9AGI0791 N/A	BERYLLIUM LABORATORY CALCIUM LABORATORY CADMIUM LABORATORY COBALT LABORATORY COPPER LABORATORY IRON LABORATORY POTASSIUM LABORATORY MAGNESIUM LABORATORY MAGNESIUM LABORATORY NICKEL LABORATORY NICKEL LABORATORY ANTIMONY LABORATORY SELENIUM LABORATORY THALLIUM LABORATORY VANADIUM LABORATORY ZINC LABORATORY ZINC LABORATORY SILVER, TOTAL ALUMINUM, TOTAL ARSENIC, TOTAL BERYLLIUM, TOTAL CALCIUM, TOTAL CALCIUM, TOTAL CADMIUM, TOTAL COPPER, TOTAL IRON, TOTAL HAGNESIUM, TOTAL MAGNESIUM, TOTAL SODIUM, TOTAL SODIUM, TOTAL SODIUM, TOTAL NICKEL, TOTAL SELENIUM, TOTAL SELENIUM, TOTAL SELENIUM, TOTAL SELENIUM, TOTAL SELENIUM, TOTAL THALLIUM, TOTAL	LC1 BS W LC1 BS W LC1 BS W LC1 BS W LC1 BS W LC1 BS W LC1 BS W LC1 BS W LC1 BS W LC1 BS W LC1 BS W LC1 BS W LC1 BS W LC1 BS W LC1 BS W LC1 BS W LC1 BS W MB1	9AGI0791 9AGI0791	N/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	N/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	07/24/00 07/24/00	07/25/00 07/25/00

LABORATORY CHRONICLE

CLIENT ID /ANALYSIS	Sample #	MTX	PREP #	ÇOLLECTN	DATE REC	EXT/PREP	ANALYSIS
MERCURY LABORATORY MERCURY, TOTAL CHROMIUM LABORATORY LEAD LABORATORY CHROMIUM, SPLP LEACH LEAD, SPLP LEACHATE CHROMIUM, SPLP LEACH LEAD, SPLP LEACHATE	LC1 BS MB1 LC1 BS LC1 BS MB1 MB1 MB2 MB2	W W W W W W W	9AHG0182 9AHG0182 9AGE0123 9AGE0123 9AGE0123 9AGE0123 9AGE0123	N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A	07/18/00 07/25/00 07/25/00 07/25/00 07/25/00 07/25/00	07/27/00 07/27/00 07/27/00 07/27/00

SIGNATURE 1/28/00

Severn Trent Laboratories - Chicago METALS CASE NARRATIVE

Client: RFW-Peoples Gas

STL#: 9A07G129

WO#: 10512-004-004-9999

Date Rec'd: 07/14/00

1. This narrative covers the analysis of 14 Soil, 1 water and 15 SPLP Leachate samples for the following metals:

(Soil & Water samples):

(SPLP Leachates):

iCP Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, K,

ICP Cr,Pb

Mg, Mn, Na, Ni, Pb, Sb, Se, Tl, V, Zn

CVAA... Hg

Method Refs: USEPA, SW-846

2. All analyses were performed within the required holding times.

- 3. All Initial and Continuing Calibration Verification (ICV/CCV's) were within control limits.
- 4. All Initial and Continuing Calibration Blanks (ICB/CCB's) were within control limits.
- 5. All Preparation/Method Blanks were below Reporting limit.
- 6. All ICP Interference Check Samples (ICSA and ICSAB) were within control limits.
- 7. Laboratory Control Sample (LCS) recoveries were within the 80-120% control limits.
- 8. Matrix spike recovery (MS/MSD) and Duplicate analysis was performed as following:

Soil sample 026; Water sample 023 and SPLP Leachate 027

Soil and Water:

All Matrix spike recoveries were within the 75-125% control limits (exception - Control limits are not applicable when the sample concentration exceed the spike added concentration by a factor of 4 or more) except for: Soil sample 026 Sb, Zn (MS/MSD)

All Duplicate results were within the 20% Relative Percent Difference (RPD) control limits for sample concentration greater than 5X the RL or +\- the RL for sample concentration less than 5X the RL except for:

Water sample 023 Zn;

Soil sample 026 Mg, Zn;

Metals case narrative 9A07G129

SPLP Leachate:

All Matrix spike recoveies were greater than 50% Duplicate results were within the 20% Relative Percent Difference (RPD) control limits.

Mani S. Iyer

Metals Section Manager

Severn Trent Laboratories Chicago METALS METHOD REFERENCE

The following	ng methods are used as reference for the analysis of samples contained with this RFW Lot: 4707612
SW846	
ЕРА	200.7 _Ag _Al _As _B _Ba _Be _Ca _Cd _Co _Cr _Cu _Fe _K _Li _Mg _Mn _Mo _Na _Ni _P _Pb _Sb _Se _Si _Sn _Sr _Ti _Tl _V _Zn _Sb204.2 _Se270.2 _Tl279.2 _Ag272.2 _As206.2 _Cd213.2 _Cr218.2 _Cu220.2 _Hg245.1 _Hg245.5 _Pb239.2 _Sb204.2 _Se270.2 _Tl279.2 _200.9 _As _Cd _Pb _Sb _Se _Tl
CLP ILM04.0	200.7 CLP-M _Ag _Al _As _B _Ba _Be _Ca _Cd _Co _Cr _Cu _Fe _K _Li _Mg _Mn _Mo _Na _Ni _P _Pb _Sb _Se _Si _Sn _Sr _Ti _Tl _V _Zn _S206.2 _Cd213.2 _Hg245.1 _Hg245.5 _Pb239.2 _Sb204.2 _Se270.2 _Tl279.2 _CN335.2
Digestion Method	SW8463005A3010A3020A3020A(+H ₂ O ₂)3050A7060A/77407470A7471A3050B EPA200.7200.0(+H ₂ O ₂)200.9(-HCL;+H ₂ O ₂) USEPA/CLPILM04.0 Exhibit D, Section III
Extraction Method	SW846 1311TCLP1312SPLP1320MEP Using TCLP ASTM
%Solids	SM 2540G _ASTM D2216 _Exhibit D Part F

CHI-22-05-002/K-1/99

Attn: Mr. Kevin Axe

Date: Friday July 28th, 2000

Project # 10512-004-004-9999 Lab Batch: **9A07G129**

Sample	Lab ID	Parameter	Result		Units	Reporting Limit
Blank 1	9AGTS556-MB1	% Solids	0.10	u	%	0.10
Blank 1	9AGI0767-MB1	Silver, Total	0.50	u	mg/kg	0.50
		Aluminum, Total	20.0	u	mg/kg	20.0
		Arsenic, Total	1.0	u	mg/kg	1.0
		Barium, Total	1.0	u	mg/kg	1.0
		Beryllium, Total	0.40	u	mg/kg	0.40
		Calcium, Total	10.0	u	mg/kg	10.0
		Cadmium, Total	0.20	u	mg/kg	0.20
		Cobalt, Total	0.50	u	mg/kg	0 50
		Chromium, Total	1.0	u	mg/kg	1.0
		Copper, Total	1.0	u	mg/kg	1.0
		Iron, Total	5.0	u	mg/kg	5.0
		Potassium, Total	500	u	mg/kg	50.0
		Magnesium, Total	10.0	u	mg/kg	10.0
		Manganese, Total	0.50	u	mg/kg	0.50
		Sodium, Total	100	u	mg/kg	100
		Nickel, Total	1.0	u	mg/kg	1.0

Attn: Mr. Kevin Axe

Date: Friday July 28th, 2000

Project # 10512-004-004-9999 Lab Batch: **9A07G129**

Sample	Lab ID	Parameter	Result		Units	Reporting Limit
Blank 1	9AGI0767-MB1	Lead, Total	0.50	u	mg/kg	050
		Antimony, Total	2.0	u	mg/kg	2.0
		Selenium, Total	0.50	u	mg/kg	0.50
		Thallium, Total	1.0	u	mg/kg	1.0
		Vanadium, Total	0.50	u	mg/kg	0.50
		Zinc, Total	1.0	u	mg/kg	1.0
Blank 1	9AHG0180-MB1	Mercury, Total	0.03	u	mg/kg	0.03
Blank 1	9AGE0118-MB1	Chromium, SPLP	0.050	u	mg/L	0.050
		Lead, SPLP	0.0075	u	mg/L	0.0075
Blank 1	9AGI0791-MB1	Silver, Total	0.0050	u	mg/L	00050
		Aluminum, Total	0.20	u	mg/L	0.20
		Arsenic, Total	0.010	u	mg/L	0.010
		Barium, Total	0.010	u	mg/L	0.010
		Beryllium, Total	0.0040	u	mg/L	0.0040
		Calcium, Total	0.10	u	mg/L	0.10
		Cadmium, Total	0.0020	u	mg/L	0.0020
		Cobalt, Total	0.0050	u	mg/L	0.0050

Attn: Mr. Kevin Axe

Date: Friday July 28th, 2000

Project # 10512-004-004-9999 Lab Batch: **9A07G129**

Sample	Lab ID	Parameter	Result		Units	Reporting Limit
Blank 1	9AGI0791-MB1	Chromium, Total	0.010	u	mg/L	0.010
		Copper, Total	0.010	u	mg/L	0.010
		Iron, Total	0.050	u	mg/L	0.050
		Potassium, Total	0.50	u	mg/L	0.50
		Magnesium, Total	0.10	u	mg/L	0.10
		Manganese, Total	0.0050	u	mg/L	0.0050
		Sodium, Total	1.0	u	mg/L	1.0
		Nickel, Total	0.010	u	mg/L	0.010
		Lead, Total	0.0050	u	mg/L	0.0050
		Antimony, Total	0.020	u	mg/L	0.020
		Selenium, Total	0.0050	u	mg/L	0.0050
		Thallium, Total	0.010	u	mg/L	0.010
		Vanadium, Total	0.0050	u	mg/L	0.0050
		Zinc, Total	0.010	u	mg/L	0.010
Blank 1	9AHG0182-MB1	Mercury, Total	0.00020	u	mg/L	0.00020
Blank 1	9AGE0123-MB1	Chromium, SPLP	0.050	u	mg/L	0.050
		Lead, SPLP	0.012		mg/L	0.0075

Attn: Mr. Kevin Axe

Date: Friday July 28th, 2000

Project # 10512-004-004-9999 Lab Batch: **9A07G129**

Sample	Lab ID	Parameter	Result	Units	Reporting Limit
Blank 2	9AGE0123-MB2	Chromium, SPLP	0.050 u	mg/L	0.050
		Lead, SPLP	0.0075 u	mg/L	0.0075

Attn: Mr. Kevin Axe

Date: Friday July 28th, 2000

Project # 10512-004-004-9999 Lab Batch: **9A07G129**

Sample Site ID	Parameter	Initial Result	Replicate	RPD
-023REP RB 1	Silver, Total	0.0050 u	0.0050 u	NC
	Aluminum, Total	0.20 u	0.20 u	NC
	Arsenic, Total	0.010 u	0.010 u	NC
	Barium, Total	0.010 u	0.010 u	NC
	Beryllium, Total	0.0040 u	0.0040 u	NC
	Calcium, Total	0.24	0.24	1.8
	Cadmium, Total	0.0020 u	0.0020 u	NC
	Cobalt, Total	0.0050 u	0.0050 u	NC
	Chromium, Total	0.010 u	0.010 u	NC
	Copper, Total	0.010 u	0.010 u	NC
	Iron, Total	0.054	0.065	19.2
	Potassium, Total	0.50 u	0.50 u	NC
	Magnesium, Total	0.10 u	0.10 u	NC
	Manganese, Total	0.0050 u	0.0050 u	NC
	Sodium, Total	1.0 u	1.0 u	NC
	Nickel, Total	0.010 u	0.010 u	NC
	Lead, Total	0.0050 u	0.0050 u	NC

Attn: Mr. Kevin Axe

Date: Friday July 28th, 2000

Project # 10512-004-004-9999 Lab Batch: **9A07G129**

Sample Site ID	Parameter	Initial Result	Replicate	RPD
-023REP RB 1	Antimony, Total	0.020	u 0.020 u	NC
	Selenium, Total	0.0050	u 0.0050 u	NC
	Thallium, Total	0.010 ι	u 0.010 u	NC
	Vanadium, Total	0.0050 t	u 0.0050 u	NC
	Zinc, Total	0.012	0.051	122
-026REP B16 8-10	% Solids	83.0	83.2	0.20
	Silver, Total	0.53	u 0.57 u	NC
	Aluminum, Total	12500	10800	15.3
	Arsenic, Total	6.4	5.3	19.0
	Barium, Total	50.4	47.3	6.4
	Beryllium, Total	0.67	0.53	24.0
	Calcium, Total	48000	56900	17.0
	Cadmium, Total	0.21 ι	u 0.23 u	NC
	Cobalt, Total	12.7	12.2	4.2
	Chromium, Total	20.7	18.6	10.9
	Copper, Total	29.0	27.9	3.7
	Iron, Total	19100	17500	8.9

Attn: Mr. Kevin Axe

Date: Friday July 28th, 2000

Project # 10512-004-004-9999 Lab Batch: **9A07G129**

Sample	Site ID	Parameter	Initial Result Replicate		RPD		
-026REP B16 8-10		Mercury, Total	0.04	u	0.04	u	NC
		Potassium, Total	4470	3	560		19.9
		Magnesium, Total	26700	334	400		22.5
		Manganese, Total	382	4	438		13.8
		Sodium, Total	281		292		3.8
		Nickel, Total	32.2		30.4		5.9
		Lead, Total	13.7		13.6		0.92
		Antimony, Total	2.1	u	2.3	u	NC ·
		Selenium, Total	0.53	u	0.57	u	NC
		Thallium, Total	1.1	u	1.1	u	NC
		Vanadium, Total	24.9		22.3		11.1
		Zinc, Total	63.2		42.6		39.0
-027REP	B16 8-10	Chromium, Leachate	0.050	u	0.050	u	NC
		Lead, Leachate	0.0075	u	0.0075	u	NC

Attn: Mr. Kevin Axe

Date: Friday July 28th, 2000

Project # 10512-004-004-9999 Lab Batch: **9A07G129**

Sample	Site ID	Parameter	Spiked Sample	Initial Result	Spiked Amount	% Recov
-023	RB 1	Silver, Total	0.047	0.0050 u	0.050	93.8
		Silver, Total MSD	0.046	0.0050 u	0.050	93.0
		Aluminum, Total	1.9	0.20 u	2.0	95.4
		Aluminum, Total MSD	1.9	0.20 u	2.0	95.6
		Arsenic, Total	0.094	0.010 u	0.10	93.8
		Arsenic, Total MSD	0.094	0.010 u	0.10	93.5
		Barium, Total	1.9	0.010 u	2.0	93.6
		Barium, Total MSD	1.9	0.010 u	2.0	94.3
		Beryllium, Total	0.046	0.0040 u	0.050	92.2
		Beryllium, Total MSD	0.046	0.0040 u	0.050	92.8
		Calcium, Total	9.0	0.24	10.0	87.9
		Calcium, Total MSD	9.1	0.24	10.0	88.5
		Cadmium, Total	0.047	0.0020 u	0.050	93.4
		Cadmium, Total MSD	0.047	0.0020 u	0.050	94.0
		Cobalt, Total	0.46	0.0050 u	0.50	92.2
		Cobalt, Total MSD	0.46	0.0050 u	0.50	92.7
		Chromium, Total	0.19	0.010 u	0.20	94.0

Attn: Mr. Kevin Axe

Date: Friday July 28th, 2000

Project # 10512-004-004-9999 Lab Batch: **9A07G129**

Sample	Site	ID	Parameter	Spiked Sample	Initial Result		Spiked Amount	% Recov
-023	RB 1		Chromium, Total MSD	0.19	0.010	u	0.20	94.4
			Copper, Total	0.24	0.010	u	0.25	94.6
			Copper, Total MSD	0.24	0.010	u	0.25	95.1
			Iron, Total	0.98	0.054		1.0	92.2
			Iron, Total MSD	0.97	0.054		1.0	91.9
			Potassium, Total	8.7	0.50	u	10.0	87.3
			Potassium, Total MSD	8.8	0.50	u	10.0	87.8
			Magnesium, Total	9.4	0.10	u	10.0	94.2
			Magnesium, Total MSD	9.5	0.10	u	10.0	94.8
			Manganese, Total	0.46	0.0050	u	0.50	93.0
			Manganese, Total MSD	0.47	0.0050	u	0.50	93.6
			Sodium, Total	9.1	1.0	u	10.0	91.4
			Sodium, Total MSD	9.1	1.0	u	10.0	91.3
			Nickel, Total	0.47	0.010	u	0.50	93.3
			Nickel, Total MSD	0.47	0.010	u	0.50	93.8
			Lead, Total	0.097	0.0050	u	0.10	97.3
			Lead, Total MSD	0.098	0.0050	u	0.10	97.5

Attn: Mr. Kevin Axe

Date: Friday July 28th, 2000

Project # 10512-004-004-9999 Lab Batch: **9A07G129**

Sample	Site ID	Parameter	Spiked Sample	Initial Result	Spiked Amount	% Recov
-023	RB 1	Antimony, Total	0.47	0.020 u	0.50	93.8
		Antimony, Total MSD	0.47	0.020 u	0.50	94.2
		Selenium, Total	0.089	0.0050 u	0.10	89.2
		Selenium, Total MSD	0.090	0.0050 u	0.10	89.9
		Thallium, Total	0.098	0.010 u	0.10	98.4
		Thallium, Total MSD	0.099	0.010 u	0.10	99.1
		Vanadium, Total	0.46	0.0050 u	0.50	92.3
		Vanadium, Total MSD	0.46	0.0050 u	0.50	929
		Zinc, Total	0.51	0.012	0.50	98.9
		Zinc, Total MSD	0.50	0.012	0.50	97.2
-026	B16 8-10	Silver, Total	4.9	0.53 u	5.5	88.8
		Silver, Total MSD	4.5	0.53 u	5.2	86.0
		Aluminum, Total	17100	12500	219	NA
•		Aluminum, Total MSD	15900	12500	208	NA
		Arsenic, Total	16.3	6.4	11.0	90.3
		Arsenic, Total MSD	15.1	6.4	10.4	84.0
		Barium, Total	258	50.4	219	94.8

Attn: Mr. Kevin Axe

Date: Friday July 28th, 2000

Project # 10512-004-004-9999 Lab Batch: **9A07G129**

Sample	Site ID	Parameter	Spiked Sample	Initial Result	Spiked Amount	% Recov
-026	B16 8-10	Barium, Total MSD	238	50.4	208	90.2
		Beryllium, Total	5.4	0.67	5.5	85.9
		Beryllium, Total MSD	5.0	0.67	5.2	82.9
		Calcium, Total	50500	48000	1100	NA
		Calcium, Total MSD	48400	48000	1040	NA
		Cadmium, Total	4.7	0.21	u 5.5	85.2
		Cadmium, Total MSD	4.3	0.21	u 5.2	82.2
		Cobalt, Total	61.2	12.7	54.8	88.5
		Cobalt, Total MSD	56.6	12.7	51.9	84.5
		Chromium, Total	44.8	20.7	21.9	110
		Chromium, Total MSD	42.0	20.7	20.8	102
		Copper, Total	59.6	29.0	27.4	112
		Copper, Total MSD	53.8	29.0	26.0	95.7
		Irón, Total	20800	19100	110	NA
		Iron, Total MSD	19200	19100	104	NA
		Mercury, Total	0.22	0.04	u 0.20	108
		Potassium, Total	7290	4470	1100	NA

Attn: Mr. Kevin Axe

Date: Friday July 28th, 2000

Project # 10512-004-004-9999 Lab Batch: **9A07G129**

Sample	Site ID	Parameter	Spiked Sample	Initial Result	Spik Amou	
-026	B16 8-10	Potassium, Total MSD	6810	4470	1040	NA
		Magnesium, Total	30800	26700	1100	NA
		Magnesium, Total MSD	29200	26700	1040	NA
		Manganese, Total	459	382	54.	8 NA
		Manganese, Total MSD	439	382	51.	9 NA
		Sodium, Total	1410	281	1100	103
		Sodium, Total MSD	1330	281	1040	101
		Nickel, Total	79.6	32.2	54.	8 86.4
		Nickel, Total MSD	73.5	32.2	51.	9 79.5
		Lead, Total	24.5	13.7	11.	0 98.8
		Lead, Total MSD	22.8	13.7	10.	4 87.7
		Antimony, Total	20.8	2.1	u 54.	8 37.9
		Antimony, Total MSD	22.3	2.1	u 51.	9 42.9
		Selenium, Total	9.0	0.53	u 11.	0 82.6
		Selenium, Total MSD	8.8	0.53	u 10.	4 84.9
		Thallium, Total	10.1	1.1	u 11.	0 92.4
		Thallium, Total MSD	9.4	1.1	u 10.	4 90.4

Attn: Mr. Kevin Axe

Date: Friday July 28th, 2000

Project # 10512-004-004-9999 Lab Batch: **9A07G129**

Sample	Site ID	Parameter	Spiked Sample	Initial Result	Spiked Amount	% Recov
-026	B16 8-10	Vanadium, Total	84.4	24.9	54.8	109
		Vanadium, Total MSD	78.3	24.9	51.9	103
		Zinc, Total	95.9	63.2	54.8	59.6
		Zinc, Total MSD	86.1	63.2	51.9	44.0
-027	B16 8-10	Chromium, Leachate	4.9	0.050 u	5.0	98.6
		Lead, Leachate	3.7	0.0075 u	5.0	73.1

Attn: Mr. Kevin Axe

Date: Friday July 28th, 2000

Project # 10512-004-004-9999 Lab Batch: **9A07G129**

Sample	Site ID	Parameter	Spike #1 % Recov	Spike #2 % Recov	RPD
-023	RB 1	Silver, Total	93.8	93.0	0.88
		Aluminum, Total	95.4	95.6	0.23
		Arsenic, Total	93.8	93.5	0.32
		Barium, Total	93.6	94.3	0.76
		Beryllium, Total	92.2	92.8	0.65
		Calcium, Total	87.9	88.5	0.64
		Cadmium, Total	93.4	940	0.64
		Cobalt, Total	92.2	92.7	0.54
		Chromium, Total	94.0	94.4	0.37
		Copper, Total	94.6	95.1	0.46
		Iron, Total	92.2	91.9	0.38
		Potassium, Total	87.3	87.8	0.66
		Magnesium, Total	94.2	94.8	0.68
		Manganese, Total	93.0	93.6	0.67
		Sodium, Total	91.4	91.3	0.17
		Nickel, Total	93.3	93.8	0.49
		Lead, Total	97.3	97.5	0.21

Date: Friday July 28th, 2000

Project # 10512-004-004-9999 Lab Batch: **9A07G129**

Attn: Mr. Kevin Axe

Site ID	Parameter	Spike #1 % Recov	Spike #2 % Recov	RPD
RB 1	Antimony, Total	93.8	94.2	0.38
	Selenium, Total	89.2	89.9	0.80
	Thallium, Total	98.4	99.1	0.71
	Vanadium, Total	92.3	92.9	0.65
	Zinc, Total	98.9	97.2	1.7
B16 8-10	Silver, Total	88.8	86.0	3.1
	Aluminum, Total	NA	NA	NC
	Arsenic, Total	90.3	84.0	7.2
	Barium, Total	94.8	90.2	5.0
	Beryllium, Total	85.9	82.9	3.6
	Calcium, Total	NA	NA	NC
	Cadmium, Total	85.2	82.2	38
	Cobalt, Total	88.5	84.5	47
	Chromium, Total	110	102	7.3
	Copper, Total	112	95.7	15.4
	Iron, Total	NA	NA	NC
	Potassium, Total	NA	NA	NC
	RB 1	RB 1 Antimony, Total Selenium, Total Thallium, Total Vanadium, Total Zinc, Total Bile 8-10 Silver, Total Aluminum, Total Arsenic, Total Barium, Total Beryllium, Total Calcium, Total Cadmium, Total Cobalt, Total Chromium, Total Copper, Total Iron, Total	RB 1 Antimony, Total 93.8 Selenium, Total 89.2 Thallium, Total 98.4 Vanadium, Total 98.9 B16 8-10 Silver, Total 88.8 Aluminum, Total 90.3 Barium, Total 90.3 Barium, Total 94.8 Beryllium, Total 85.9 Calcium, Total 85.9 Cadmium, Total 88.5 Chromium, Total 110 Copper, Total 112 Iron, Total NA	Site ID Parameter % Recov % Recov RB 1 Antimony, Total 93.8 94.2 Selenium, Total 89.2 89.9 Thallium, Total 98.4 99.1 Vanadium, Total 92.3 92.9 Zinc, Total 98.9 97.2 B16 8-10 Silver, Total 88.8 86.0 Aluminum, Total NA NA Arsenic, Total 90.3 84.0 Barium, Total 94.8 90.2 Beryllium, Total 85.9 82.9 Calcium, Total NA NA Cadmium, Total 85.2 82.2 Cobalt, Total 88.5 84.5 Chromium, Total 110 102 Copper, Total 112 95.7 Iron, Total NA NA

Attn: Mr. Kevin Axe

Date: Friday July 28th, 2000

Project # 10512-004-004-9999 Lab Batch: **9A07G129**

Sample	Site ID	Parameter	Spike #1 % Recov	Spike #2 % Recov	RPD
-026	B16 8-10	Magnesium, Total	NA	NA	NC
		Manganese, Total	NA	NA	NC
		Sodium, Total	103	101	1.2
		Nickel, Total	86.4	79.5	83
		Lead, Total	98.8	87.7	11.9
		Antimony, Total	37.9	42.9	12.5
		Selenium, Total	82.6	84.9	2.7
		Thallium, Total	92.4	90.4	3.0
		Vanadium, Total	109	103	5.4
		Zinc, Total	59.6	44.0	30.1

Attn: Mr. Kevin Axe

Date: Friday July 28th, 2000

Project # 10512-004-004-9999 Lab Batch: **9A07G129**

Inorganic Laboratory Control Standards Report

Lab ID	Parameter	Spiked Amount	Units	Spike #1 % Recov	Spike #2 % Recov.	RPD
9AGI0767-LC1	Silver, LCS	5.0	mg/kg	87.6	NA	NA
	Aluminum, LCS	200	mg/kg	95.4	NA	NA
	Arsenic, LCS	10.0	mg/kg	82.6	NA	NA
	Barium, LCS	200	mg/kg	92.8	NA	NA
	Beryllium, LCS	5.0	mg/kg	84.6	NA	NA
	Calcium, LCS	1000	mg/kg	86.0	NA	NA
	Cadmium, LCS	5.0	mg/kg	86.0	NA	NA
	Cobalt, LCS	50.0	mg/kg	88.2	NA	NA
	Chromium, LCS	20.0	mg/kg	91.4	NA	NA
	Copper, LCS	25.0	mg/kg	95.7	NA	NA
	Iron, LCS	100	mg/kg	90.5	NA	NA
	Potassium, LCS	1000	mg/kg	86.6	NA	NA
	Magnesium, LCS	1000	mg/kg	92.1	NA	NA
	Manganese, LCS	50.0	mg/kg	91.9	NA	NA
	Sodium, LCS	1000	mg/kg	93.6	NA	NA
	Nickel, LCS	50.0	mg/kg	85.6	NA	NA
	Lead, LCS	10.0	mg/kg	95.4	NA	NA

Attn: Mr. Kevin Axe

Date: Friday July 28th, 2000

Project # 10512-004-004-9999 Lab Batch: **9A07G129**

Inorganic Laboratory Control Standards Report

		Spiked		Spike #1	Spike #2	
Lab ID	Parameter	Amount	Units	% Recov.	% Recov.	RPD
9AGI0767-LC1	Antimony, LCS	50.0	mg/kg	89.7	NA	NA
	Selenium, LCS	10.0	mg/kg	82.8	NA	NA
	Thallium, LCS	10.0	mg/kg	93.0	NA	NA
	Vanadium, LCS	50.0	mg/kg	94.0	NA	NA
	Zinc, LCS	50.0	mg/kg	85.5	NA	NA
9AHG0180-LC1	Mercury, LCS	030	mg/kg	114	NA	NA
9AGE0118-LC1	Chromium, LCS	0.20	mg/L	94.6	NA	NA
	Lead, LCS	0.10	mg/L	97.2	NA	NA
9AGI0791-LC1	Silver, LCS	0.050	mg/L	99.0	NA	NA
	Aluminum, LCS	2.0	mg/L	95.5	NA	NA
	Arsenic, LCS	0.10	mg/L	95.5	NA	NA
	Barium, LCS	2.0	mg/L	95.5	NA	NA

3 Distribution ☐ GC ☐ Wet Chem	4 Final Approval o ⊠ Send Copy to Client	f All Actions
☐ GC/MS ☐ Digestions ☐ Metals ☐ Extractions	Notes:	95
Distribution for QA Other	PM Signature: Many May or 7/28/	rold 20
	. (7-7)	

Attn: Mr. Kevin Axe

Date: Friday July 21st, 2000

Project # 10512-004-004-9999 Lab Batch: **9A07G130**

Sample Site ID	Parameter	Initial Result	Replicate	RPD
-023REP SS08 02	рН	7.8	7.8	0.0

Attn: Mr. Kevin Axe

Date: Friday July 28th, 2000

Project # 10512-004-004-9999 Lab Batch: **9A07G130**

Sample	Lab ID	Parameter	Result		Units	Reporting Limit
Blank 1	9AGTS558-MB1	% Solids	0.10	u	%	0.10
Blank 1	9AGI0766-MB1	Silver, Total	0.50	u	mg/kg	0.50
		Aluminum, Total	20.0	u	mg/kg	20.0
		Arsenic, Total	1.0	u	mg/kg	1.0
		Barium, Total	1.0	u	mg/kg	1.0
		Beryllium, Total	0.40	u	mg/kg	0.40
		Calcium, Total	10.3		mg/kg	10.0
		Cadmium, Total	0.20	u	mg/kg	0.20
		Cobalt, Total	0.50	u	mg/kg	0.50
		Chromium, Total	1.0	u	mg/kg	1.0
		Copper, Total	1.0	u	mg/kg	1.0
		Iron, Total	5.0	u	mg/kg	5.0
		Potassium, Total	50.0	u	mg/kg	50.0
		Magnesium, Total	10.0	u	mg/kg	10.0
		Manganese, Total	0.50	u	mg/kg	0.50
		Sodium, Total	100	u	mg/kg	100
		Nickel, Total	1.0	u	mg/kg	1.0

Attn: Mr. Kevin Axe

Date: Friday July 28th, 2000

Project # 10512-004-004-9999 Lab Batch: **9A07G130**

Sample	Lab ID	Parameter	Result		Units	Reporting
Blank 1	9AGI0766-MB1	Lead, Total	0.50	u	mg/kg	0.50
		Antimony, Total	2.0	u	mg/kg	2.0
		Selenium, Total	0.50	u	mg/kg	0.50
		Thallium, Total	1.0	u	mg/kg	1.0
		Vanadium, Total	0.50	u	mg/kg	0.50
		Zinc, Total	1.0	u	mg/kg	1.0
Blank 1	9AHG0181-MB1	Mercury, Total	0.03	u	mg/kg	0.03
Blank 1	9AGE0121-MB1	Chromium, SPLP	0.050	u	mg/L	0.050
		Lead, SPLP	0.0075	u	mg/L	0.0075

Attn: Mr. Kevin Axe

Date: Friday July 28th, 2000

Project # 10512-004-004-9999 Lab Batch: **9A07G130**

Sample	Site	ID	Parameter	Initial Result		Replica	te	RPD
-019REP	SS11	0-2	% Solids	74.6		77.8		4.2
			Silver, Total	0.52	u	0.55	u	NC
			Aluminum, Total	13000	11	500		12.6
			Arsenic, Total	5.4		5.2		3.9
			Barium, Total	66.1		64.9		1.9
			Beryllium, Total	1.2		2.1		54.2
			Calcium, Total	12200	108	800		12.5
			Cadmium, Total	0.41		0.69		51.6
			Cobalt, Total	9.9		8.6		13.3
			Chromium, Total	20.5		16.4		22.4
			Copper, Total	29.3		30.6		4.3
			Iron, Total	19100	19	600		2.8
			Mercury, Total	0.05		0.04	u	NC
			Potassium, Total	2950	1	550		62.1
			Magnesium, Total	8460	4.	430		62.5
			Manganese, Total	204	,	273		28.8
			Sodium, Total	605	(931		42.4

Attn: Mr. Kevin Axe

Date: Friday July 28th, 2000

Project # 10512-004-004-9999 Lab Batch: **9A07G130**

Sample Site ID	Parameter	Initial Result	Replicate	RPD
-019REP SS11 0-2	Nickel, Total	29.8	25.7	14.7
	Lead, Total	48.5	54.7	12.1
	Antimony, Total	2.1 u	2.2 u	NC
	Selenium, Total	0.81	0.55	37.6
	Thallium, Total	1.0 u	1.1 u	NC
	Vanadium, Total	28.4	24.6	14.3
	Zinc, Total	85.8	168	64.8
-020REP SS11 0-2	Chromium, Leachate	0.050 u	0.050 u	NC
	Lead, Leachate	0.039	0.040	0.76

Attn: Mr. Kevin Axe

Date: Friday July 28th, 2000

Project # 10512-004-004-9999 Lab Batch: **9A07G130**

Sample	Site ID	Parameter	Spiked Sample	Initial Result	Spiked Amount	% Recov
-019	SS11 0-2	Silver, Total	4.8	0.52	u 5.3	90.8
		Silver, Total MSD	5.2	0.52	u 5.6	92.8
		Aluminum, Total	16100	13000	213	NA
		Aluminum, Total MSD	19000	13000	223	NA
		Arsenic, Total	17.0	5.4	10.6	109
		Arsenic, Total MSD	17.7	5.4	11.2	110
		Barium, Total	276	66.1	213	98.9
		Barium, Total MSD	288	66.1	223	99.5
		Beryllium, Total	6.8	1.2	5.3	105
		Beryllium, Total MSD	6.7	1.2	5.6	97.6
		Calcium, Total	15300	12200	1060	NA
		Calcium, Total MSD	13400	12200	1120	NA
		Cadmium, Total	5.2	0.41	5.3	90.6
		Cadmium, Total MSD	5.6	0.41	5.6	92.1
		Cobalt, Total	55.6	9.9	53.2	86.1
		Cobalt, Total MSD	60.5	9.9	55.9	90.8
		Chromium, Total	41.0	20.5	21.3	96.1

Attn: Mr. Kevin Axe

Date: Friday July 28th, 2000

Project # 10512-004-004-9999 Lab Batch: **9A07G130**

Sample	Site ID	Parameter	Spiked Sample	Initial Result	Spiked Amount	% Recov
-019	SS11 0-2	Chromium, Total MSD	47.8	20.5	22.3	122
		Copper, Total	64.4	29.3	26.6	132
		Copper, Total MSD	59.8	29.3	27.9	109
		Iron, Total	23800	19100	106	NA
		Iron, Total MSD	24500	19100	112	NA
		Mercury, Total	0.27	0.05	0.22	96.0
		Potassium, Total	3720	2950	1060	72.6
		Potassium, Total MSD	5240	2950	1120	205
		Magnesium, Total	7010	8460	1060	NA
		Magnesium, Total MSD	8740	8460	1120	NA
		Manganese, Total	347	204	53.2	269
		Manganese, Total MSD	379	204	55.9	313
		Sodium, Total	1820	605	1060	114
		Sodium, Total MSD	1750	605	1120	103
		Nickel, Total	80.5	29.8	53.2	95.4
		Nickel, Total MSD	85.0	29.8	55.9	98.9
		Lead, Total	180	48.5	10.6	NA

Attn: Mr. Kevin Axe

Date: Friday July 28th, 2000

Project # 10512-004-004-9999 Lab Batch: **9A07G130**

Sample	Site ID	Parameter	Spiked Sample	Initial Result	Spiked Amount	% Recov
-019	SS11 0-2	Lead, Total MSD	117	48.5	11.2	NA
		Antimony, Total	24.6	2.1 ι	u 53.2	46.3
		Antimony, Total MSD	26.9	2.1 ι	u 55.9	48.2
		Selenium, Total	8.9	0.81	10.6	75.7
		Selenium, Total MSD	9.3	0.81	11.2	76.2
		Thallium, Total	10.4	1.0 t	u 10.6	97.6
		Thallium, Total MSD	11.0	1.0	u 11.2	98.6
		Vanadium, Total	79.8	28.4	53.2	96.7
		Vanadium, Total MSD	88.5	28.4	55.9	108
		Zinc, Total	287	85.8	53.2	377
		Zinc, Total MSD	156	85.8	55.9	126
-020	SS11 0-2	Chromium, Leachate	5.0	0.050	u 5.0	99.8
		Lead, Leachate	5.0	0.039	5.0	98.5

Attn: Mr. Kevin Axe

Date: Friday July 28th, 2000

Project # 10512-004-004-9999 Lab Batch: **9A07G130**

Sample	Site ID	Parameter	Spike #1 % Recov	Spike #2 % Recov	RPD
-019	SS11 0-2	Silver, Total	90.8	92.8	2.2
		Aluminum, Total	NA	NA	NC
		Arsenic, Total	109	110	0.40
		Barium, Total	98.9	99.5	0.64
		Beryllium, Total	105	97.6	6.8
-		Calcium, Total	NA	NA	NC
		Cadmium, Total	90.6	92.1	1.7
		Cobalt, Total	86.1	90.8	5.3
		Chromium, Total	96.1	122	24.0
		Copper, Total	132	109	18.8
		Iron, Total	NA	NA	NC
		Potassium, Total	72.6	205	95.3
		Magnesium, Total	NA	NA	NC
		Manganese, Total	269	313	14.9
		Sodium, Total	114	103	10.1
		Nickel, Total	95.4	98.9	3.6
		Lead, Total	NA	NA	NC

Attn: Mr. Kevin Axe

Date: Friday July 28th, 2000

Project # 10512-004-004-9999 Lab Batch: **9A07G130**

Sample	Site ID	Parameter	Spike #1 % Recov	Spike #2 % Recov	RPD
-019	SS11 0-2	Antimony, Total	46.3	48.2	4.1
		Selenium, Total	75.7	76.2	0.74
		Thallium, Total	97.6	98.6	1.4
		Vanadium, Total	96.7	108	10.6
		Zinc, Total	377	126	99.8

Attn: Mr. Kevin Axe

Date: Friday July 28th, 2000

Project # 10512-004-004-9999 Lab Batch: **9A07G130**

Inorganic Laboratory Control Standards Report

Lab ID	Parameter	Spiked Amount	Units	Spike #1 % Recov.	Spike #2 % Recov.	RPD
9AGI0766-LC1	Silver, LCS	5.0	mg/kg	100	NA	NA
	Aluminum, LCS	200	mg/kg	98.8	NA	NA
	Arsenic, LCS	10.0	mg/kg	97.0	NA	NA
	Barium, LCS	200	mg/kg	99.6	NA	NA
	Beryllium, LCS	5.0	mg/kg	99.4	NA	NA
	Calcium, LCS	1000	mg/kg	96.7	NA	NA
	Cadmium, LCS	5.0	mg/kg	102	NA	NA
	Cobalt, LCS	50.0	mg/kg	100	NA	NA
	Chromium, LCS	20.0	mg/kg	103	NA	NA
	Copper, LCS	25.0	mg/kg	103	NA	NA
	Iron, LCS	100	mg/kg	104	NA	NA
	Potassium, LCS	1000	mg/kg	87.9	NA	NA
	Magnesium, LCS	1000	mg/kg	102	NA	NA
	Manganese, LCS	50.0	mg/kg	101	NA	NA
	Sodium, LCS	1000	mg/kg	101	NA	NA
	Nickel, LCS	50.0	mg/kg	101	NA	NA
	Lead, LCS	10.0	mg/kg	106	NA	NA

Attn: Mr. Kevin Axe

Date: Friday July 28th, 2000

Project # 10512-004-004-9999 Lab Batch: **9A07G130**

Inorganic Laboratory Control Standards Report

Lab ID	Parameter	Spiked Amount	Units	Spike #1 % Recov.	Spike #2 % Recov.	RPD
9AGI0766-LC1	Antimony, LCS	50.0	mg/kg	97.7	NA	NA
	Selenium, LCS	10.0	mg/kg	88.9	NA	NA
	Thallium, LCS	10.0	mg/kg	104	NA	NA
	Vanadium, LCS	50.0	mg/kg	92.2	NA	NA
	Zinc, LCS	50.0	mg/kg	100	NA	NA
9AHG0181-LC1	Mercury, LCS	0.30	mg/kg	114	NA	NA
9AGE0121-LC1	Chromium, LCS	0.20	mg/L	101	NA	NA
	Lead, LCS	0.10	mg/L	104	NA	NA

Shaded Areas For Internal Use Only of	Lab Lot # 94079 129	Package Sealed Samples Sealed Yes No Yes (No)	Received on Ice Samples Intact	٦,		7.77	2		≸)	Labels an	(Yes) No COC not present	Additional Analyses / Remarks		F-ee Tar/011		F. re Tar / 01/				Free Ta-1011					5-00	ALMY 2016 TIME	Date Received 7 / (4 / 00	Courier: Hand Delivered X AC Bill of Lading:	WH 11.XX XX XX XX 11 1 XX
Management was a supplied to the supplied to t						Quote:																			COMPANY STL	Li COMPANY			
BIII To:	Contact:	Company:Address:		Phone:		PQ#:						Jo. Z	x	×											BOEWED BY	RECEIVED BY LINKA	COMMENTS:		
	Aze	77			And the state of t		** Cont	Volume	Preserv	sp.	5	SM Scory Salve	メ	× ×	 										7	ПМЕ	Preservative Key 1. HCl, Cool to 4°	 H2854, Cool to 4° HN03, Cool to 4° NaOH, Cool to 4° NaOHZn Acetate, Cool to 4° Cool to 4° 	7. None
Report To:	Contact: KOVI h	Company: $\frac{\mathcal{RFU}}{\mathcal{CHI}}$		Phone:	Fax:	E-Mail.	200		600 600	ed / / /	Fax:	Sampling Date Time	Sh:60/h1/L	00.01 HILL	77/14 16:15	17/14 14.45	00:81 PINT	7/14 12:00	2/14 12:08	7/13 1630	7/13 16:45	7/13 BB	D/13 1400	7/13 11.50	7/13 19200	DATE	Container Key	2. VOA Vial 3. Sterlie Plastic 4. Amber Glass 5. Widemouth Glass 6. Other	
	Ö	<u>σ </u> ₹		<u>.</u>	ŭ.		Signature:	Project Number	2/50)	Date Required Hard Copy:		Client Sample ID	و ۱۰۰ و	8-10	51-91 9	, h-6		8-9	4 6-8 DP	S-9 8	0	8-9	6-8	10.12	14-1 SCOMPANY	COMPANY	Sediment	SO = Solid DS = Drum Solid DL = Drum Liquid L = Leachate WI = Wipe	1
		Committed To Verse Chances	Chicago Laboratory	2417 Bond Street	University Park, IL. 60466 Phone: 708-534-5200	Fax: 708-534-5211	Sampler Name:	Project Name:	hyle ber	Project Location: Roplas	Lab PM:	Laboratory ID ws-wsp	250	026/027 × BIL		518 180/080	b18 8 1d	718	B16	818	818	9/8	950	187	RELINQUISHED BY 87	RELINQUISHED BY	Matrix	= Water = Soil = Sludge S = Miscellaneous	= Air

Analysis Corporation

Tumaround Time: am/pm Time Results Needed: Lab No. Contact Information: Remarks Environmental Lead and Industrial Hygiene ACCREDITED LABORATORY TYPE OF ANALYSES Sample Verification **€** 2201 West Campbell Park Drive, Chicago, Illinois 60612-3547 Phone: (312) 733-0551 Fax: (312) 733-2386 NE STATE OF THE PARTY OF THE PA CHAIN OF CUSTODY RECORD e-mail address: STATinfo@STATAnalysis.com AIHA accredited 10248, NVLAP accredited 101202-0 Lab. Use: No. of Containers O Grab duoo Date/Time: 15:40 00 **e** 145 Taken <u>ي</u> <u>و</u> SIZI NIK Time XIV 125 Note 23 173 Date Taken H14(05m sd) 100 has Sample Description 200 to K DXC 2-0 7 7-0 الح Verston 2/50/ 0 **LO 88** 5509 1025 58 68 Refinquished by: (Signature) = Location/Address: Project Number: 10x6 155 Project Name: Client Name: Samplers: 220 Report 810/ 420 Client Sample .. 20 ... V 201 W 120 120,000 10000

(in 2 2 Attention:

Other Contact:

Phone Number: Fax Number:

X S

ž

- Sample Labels Match Sample ID

Date/Time: 7-15-00 14-30 - Refrigerated

Date/Time:

ž

<u>ソ</u>왕

Container OK

71.11

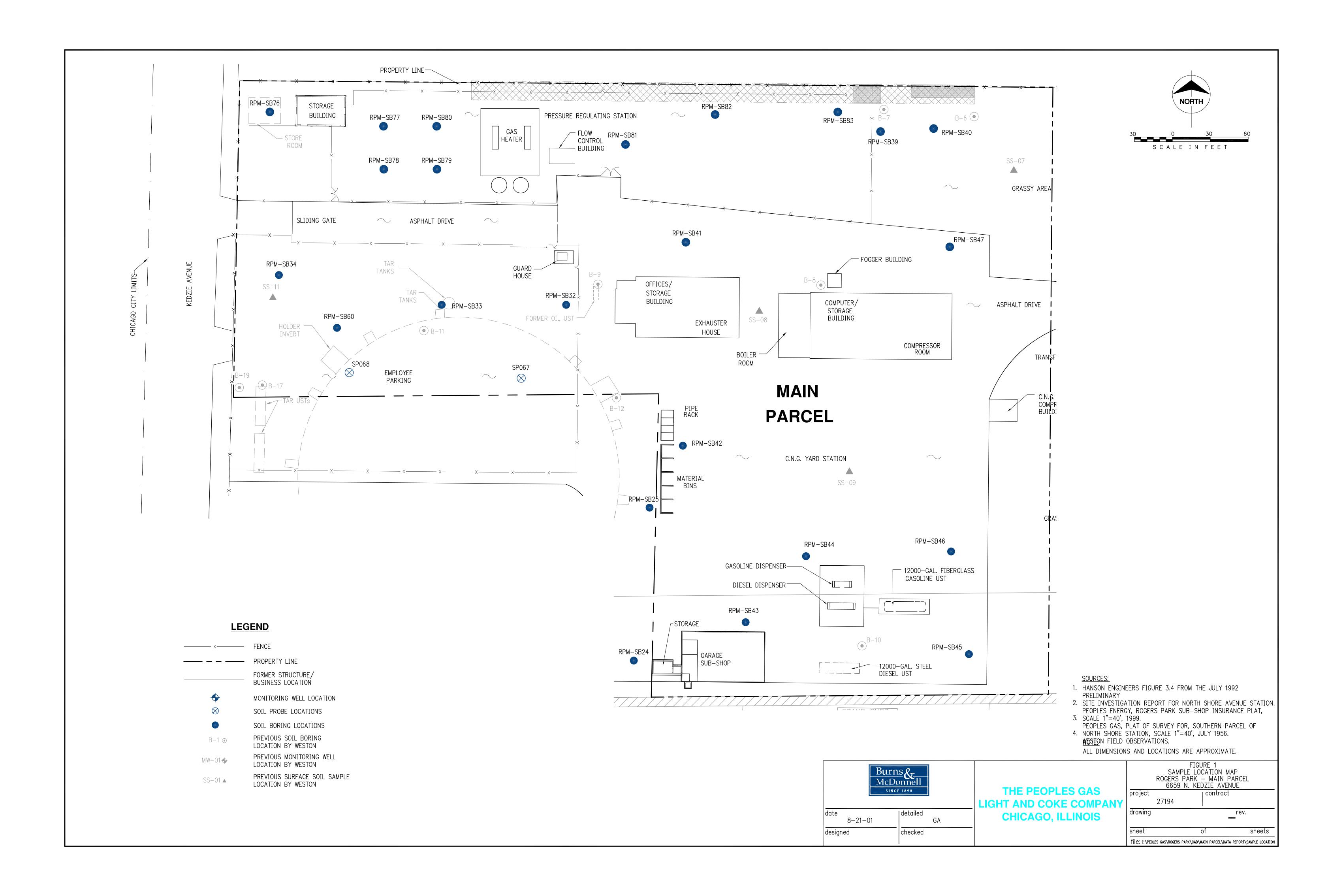
Date/Time:

3

11.

Received for lab by: (Signature)

Relinquished by: (Signature)


Received by: (Signature)

Relinquished by: (Signature)

とと JI 33 AG 33 171 EIRA Res. Cl. Check ok Yes No (NA) Hand Delivered Yes (No) NA Preserv. indicated ၌ TIME 1430 Samples Sealed ð Samples Intact Additional Analyses / Remarks COC not present 12 Fre Tar Yes (No) Sample Labels and COC Agree ナー of Cooler Shaded Areas For Internal Use Only 94076 3](5 27-15-00 Impacted Invade (§ 7.7 ပွ Within Hold Time Date Received Received on Ice Package Sealed Bill of Lading: Lab Lot# Temperature pH Check ok 2 Yes (No Yes No (kes) No زيرes) No Courier: V 500/4 V. Svally res N. Swall Lynn thing COMPANY COMPANY Quote: RECEIVED BY CHILL SAMES X COMMENTS RECEIVED BY X X X X Z X X Company: Address: BIII To Contact: Fax: \$ L H2SO4, Cool to 4°
I HNO3, Cool to 4°
I NaOH, Cool to 4°
IN NaOHZA Acetate, Cool to 4°
Cool to 4° X X \propto ¥ X X Preservative Key Χ ۲ HCi, Cool to 4° 3 Comp/Grab S Ś O S Refrg # #/ Cont Volume J 3 Preserv 7/12/00/15:15/5 Matrix 7/12/00/14:35/S Dappard -- C161 4 C1 C9 1300 713/00/09:20 1300 09:20 7/12/00 13:00 1/12/00/17:40 7/13/80 108:10 7/13/00 08:25 Hz 18 16:30 31:11 pd21/2 2/17/00/11:25 company: WESTON Sampling Date Time Contact: KEUTH なったのの DATE CMI VOA Vial Sterlie Plastic Amber Glass Widemouth Glass Other Container Key Report To: MV Address: Plastic Phone: E-Mail 21501 (DMP) Fax Hard Copy: Fax: Project Numbe Date Required Total D 4 G Q 3,5-4,5 7-8, 11/-12/ 5/- 9 13,-14 Signature: 1,-8, 4-5 COMPANY COMPANY 1,-8, Sample ID Matrix Key
SE = Sediment
SO = Solid
DL = Drum Lquid
DL = Drum Lquid
L = Leachate
Wi = Wipe ケーと 90A Client 2531 **B**S Project Location: PEOPLE 813 风风 813 **BI7** RELINDUISHED BY LY P. B. IDDO CARMICHAEL Chicago Laboratory 2417 Bond Street ග University Park, IL 60466 Committed To Your Success Phone: 708-534-5200 Fax: 708-534-5211 Proples (sas W = Water
S = Soil
SL = Sludge
MS = Miscellaneous
OL = Oil asw-sv Sampler Name: 400/E 499 WW = Wastewater RELINQUISHED BY 02(/024 000/000 Project Name: 00//00 010/200 015/01% 870/210 929/219 710/510 01c/110 Laboratory # Air ۵ Lab PM:

Figure

The Peoples Gas Light and Coke Company
The Rogers Park Sub-Shop
East Parcel

